×

Monitoring imprecise fraction of nonconforming items using \(p\) control charts. (English) Zbl 1511.62478

Summary: The quality characteristics, which are known as attributes, cannot be conveniently and numerically represented. Generally, the attribute data can be regarded as the fuzzy data, which are ubiquitous in the manufacturing process and cannot be measured precisely and often be collected by visual inspection. In this paper, we construct a \(p\) control chart for monitoring the fraction of nonconforming items in the process in which fuzzy sample data are collected from the manufacturing process. The resolution identity – a well-known theorem in the fuzzy set theory – is invoked to construct the control limits of fuzzy-\(p\) control charts using fuzzy data. In order to determine whether the plotted imprecise fraction of nonconforming items is within the fuzzy lower and upper control limits, we also propose a ranking method for a set of fuzzy numbers. Using the fuzzy-\(p\) control charts and the proposed acceptability function to classify the manufacturing process allows the decision-maker to make linguistic decisions such as rather in control or rather out of control. A practical example is provided to describe the applicability of the fuzzy set theory to a conventional \(p\) control chart.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62A86 Fuzzy analysis in statistics
Full Text: DOI

References:

[1] Cheng, C. B. 2005. Fuzzy process control: construction of control charts with fuzzy numbers. Fuzzy Sets Syst., 154: 287-303. · doi:10.1016/j.fss.2005.03.002
[2] Dubois, D. and Prade, H. 1978. Operations on fuzzy numbers. Int. J. Syst. Sci., 9: 613-626. · Zbl 0383.94045
[3] Evans, J. R. and Lindsay, W. M. 2008. The Management and Control of Quality, Boston: South-Western College Publishing.
[4] Filzmoser, R. and Vertl, R. 2004. Testing hypotheses with fuzzy data: The fuzzy p-value. Metrika, 59: 21-29. · Zbl 1052.62009 · doi:10.1007/s001840300269
[5] Grzegorzewski, P. 1997. Control charts for fuzzy data, : 1326-1330. Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing EUFIT97, Aachen
[6] Grzegorzewski, P. 2000. Testing statistical hypotheses with vague data. Fuzzy Sets Syst., 112: 501-510. · Zbl 0948.62010 · doi:10.1016/S0165-0114(98)00061-X
[7] Grzegorzewski, P. 2002. “Testing fuzzy hypotheses with vague data”. In Statistical Modeling, Analysis and Management of Fuzzy Data, Edited by: Bertoluzza, C., Gil, M. A. and Ralescu, D. 213-225. Springer-Physica Verlag, Heidelberg. · doi:10.1007/978-3-7908-1800-0_14
[8] Grzegorzewski, P. and Hryniewicz, O. 2000. Soft methods in statistical quality control. Control Cybernet, 29: 119-140. · Zbl 1030.90019
[9] Gülbay, M. and Kahraman, C. 2007. An alternative approach to fuzzy control charts: Direct fuzzy approach. Inf. Sci., 177: 1463-1480. · Zbl 1120.93332 · doi:10.1016/j.ins.2006.08.013
[10] Gülbay, M., Kahraman, C. and Ruan, D. 2004. α-cut fuzzy control charts for linguistic data. Int. J. Intell. Syst., 19: 1173-1196. · Zbl 1063.93003 · doi:10.1002/int.20044
[11] Kanagawa, A., Tamaki, F. and Ohta, H. 1993. Control charts for process average and variability based on linguistic data. Int. J. Prod. Res., 31(4): 913-922. · Zbl 0769.62076
[12] Montgomery, D. C. 2008. Introduction to Statistical Quality Control, 6, New York: John Wiley & Sons, Inc..
[13] Perrone, G., Zinno, A. and Noto La Diega, S. 2001. Fuzzy discrete event simulation: A new tool for rapid analysis of production systems under vague information. J. Intell. Manuf., 12: 309-326. · doi:10.1023/A:1011213412547
[14] Raz, T. and Wang, J. H. 1990. Probabilistic and membership approaches in the construction of control charts for linguistic data. Prod. Plan. Control, 1: 147-157.
[15] Ryer, A. 1997. The Light Measurement Handbook, Newburyport, MA: International Light.
[16] Sengupta, A. and Pal, T. K. 2000. On comparing interval numbers. Eur. J. Oper. Res., 127: 28-43. · Zbl 0991.90080 · doi:10.1016/S0377-2217(99)00319-7
[17] Sugano, N. 2006. Fuzzy set theoretical approach to achromatic relevant color on the natural color system. Int. J. Innov. Comput. Inf. Control, 2(1): 193-203.
[18] Viertl, R. and Hareter, D. 2004. Fuzzy estimation and imprecise probability. J. Appl. Math. Mech., 84(10-11): 731-739. · Zbl 1076.62004
[19] Wang, J. H. and Chen, C. H. 1995. Economic statistical np-control chart designs based on fuzzy optimization. Int. J. Qual. Reliab. Manage., 12: 88-92. · doi:10.1108/02656719510076276
[20] Wang, J. H. and Raz, T. 1988. Applying fuzzy set theory in the development of quality control charts 30-35. Orlando, FL Int. Industrial Engineering Conference Proceedings
[21] Wang, J. H. and Raz, T. 1990. On the construction of control charts using linguistic variables. Int. J. Prod. Res., 28(3): 477-487.
[22] Woodall, W. H. 1997. Control charts based on attribute data: Bibliography and review. J. Qual. Tech., 29(2): 172-183.
[23] Zadeh, L. A. 1968. Probability measure of fuzzy events. J. Math. Anal. Appl., 28: 421-427. · Zbl 0174.49002 · doi:10.1016/0022-247X(68)90078-4
[24] Zadeh, L. A. 1975. “The concept of linguistic variable and its application to approximate reasoning I, II and III”. In Inf. Sci Vol. 8, 199-249. 8 (1975), pp. 301-357; 9 (1975), 43-80 · Zbl 0404.68075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.