×

The modified fuzzy mortality model based on the algebra of ordered fuzzy numbers. (English) Zbl 1523.62215

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

Human Mortality
Full Text: DOI

References:

[1] Bartkowiak, M., & Rutkowska, A. (2018). Fuzzy approaches in forecasting mortality rates. In J.Kacprzyk (ed.), E.Szmidt (ed.), S.Zadrożny (ed.), K.Atanassov (ed.), & M.Krawczak (ed.) (Eds.), Advances in Fuzzy Logic and Technology 2017, 996, Proceedings of EUSFLAT‐2017 - The 10th Conference of the European Society for Fuzzy Logic and Technology, September 11-15, 2017, Warsaw, Poland and IWIFSGN’2017 - The Sixteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, September 13-15, 2017, Warsaw, Poland, Volume 1 Springer, Cham.
[2] Bongaarts, J. (2005). Long‐range trends in adult mortality: Models and projection methods. Demography, 42(1), 23-49.
[3] Booth, H., Hyndman, R. J., Tickle, L., & De Jong, P. (2006). Lee‐Carter mortality forecasting: A multi‐country comparison of variants and extensions models. Demographic Research, 15(9), 289-310.
[4] Brouhns, N., Denuit, M., & Vermunt, J. K. (2002). A Poisson log‐bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics, 31(3), 373-393. · Zbl 1074.62524
[5] Cairns, A. J. G., Blake, D., & Dowd, K. (2006). A two‐factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance, 73, 687-718.
[6] Currie, I. D., Durban, M., & Eilers, P. H. C. (2004). Smoothing and forecasting mortality rates. Statistical Modelling, 4(4), 279-298. · Zbl 1061.62171
[7] Danesi, I. L., Haberman, S., & Millossovich, P. (2015). Forecasting mortality in subpopulations using Lee‐Carter type models: A comparison. Insurance: Mathematics and Economics, 62(4), 151-161. · Zbl 1318.91109
[8] De Andrés‐Sánchez, J., & Puchades, L. G.‐V. (2019). A fuzzy‐random extension of the Lee‐Carter mortality prediction model. International Journal of Computational Intelligence Systems, 12(2), 775-794.
[9] De Jong, P., & Tickle, L. (2006). Extending Lee-Carter mortality forecasting. Mathematical Population Studies, 13(1), 1-18. · Zbl 1151.91742
[10] Demirel, D. F., & Basak, M. (2015). A modified fuzzy Lee‐Carter method for modeling human mortality. In A.Rosa (ed.), J. J.Merelo (ed.), A.Dourado (ed.), J. M.Cadenas (ed.), K.Madani (ed.), A.Ruano (ed.), & J.Filipe (ed.) (Eds.), Proceedings of the 7th International Joint Conference on Computational Intelligence (pp. 17-24). Lisbon, SciTePress - Science and Technology Publications, Lda, https://www.scitepress.org/ProceedingsDetails.aspx?ID=RCZ7WUIPfKk=&t=1.
[11] Diamond, P. (1988). Fuzzy least‐squares. Information Sciences, 46(3), 141-157. · Zbl 0663.65150
[12] Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626. · Zbl 0383.94045
[13] Haberman, S., & Renshaw, A. (2012). Parametric mortality improvement rate modelling and projecting. Insurance: Mathematics and Economics, 50(3), 309-333. · Zbl 1237.91129
[14] Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Retrieved from https://www.mortality.org;https://www.humanmortality.de.
[15] Koissi, M.‐C., & Shapiro, A. F. (2006). Fuzzy formulation of the Lee‐Carter model for mortality forecasting. Insurance: Mathematics and Economics, 39, 287-309. · Zbl 1151.91576
[16] Kosiński, W. (2006). On fuzzy number calculus. International Journal of Applied Mathematics and Computer Science, 16(1), 51-57. · Zbl 1334.94112
[17] Kosiński, W., & Prokopowicz, P. (2004). Algebra of fuzzy numbers. Matematyka Stosowana. Matematyka dla Społeczeństwa, 5(46), 37-63 (in Polish).
[18] Kosiński, W., Prokopowicz, P., & Ślęzak, D. (2002a). Drawback of fuzzy arthmetics—New intutions and propositions. In T.Burczynski (ed.), W.Cholewa (ed.), & W.Moczulski (ed.) (Eds.), Proceedings of Methods of Artificial Intelligence (pp. 231-237). Gliwice: PACM.
[19] Kosiński, W., Prokopowicz, P., & Ślęzak, D. (2002b). Fuzzy numbers with algebraic operations: Algorithmic approach. In M.Klopotek (ed.), S. T.Wierzchoń (ed.), & M.Michalewicz (ed.) (Eds.), Intelligent Information Systems 2002, Advances in Soft Computing (Vol. 17, pp. 311-320). Heidelberg: Physica Verlag. https://doi.org/10.1007/978-3-7908-1777-5_33. · doi:10.1007/978-3-7908-1777-5_33
[20] Kosiński, W., Prokopowicz, P., & Ślęzak, D. (2003). Ordered fuzzy numbers. Bulletin of the Polish Academy of Sciences Mathematics, 51, 327-338.
[21] Kou, Y. (2016). Fuzzy formulation of the Lee‐Carter model for the mortality forecasting with age‐specific enhancement. In B.‐Y.Cao (ed.), P.‐Z.Wang (ed.), Z.‐L.Liu (ed.), & Y.‐B.Zhong (ed.) (Eds.), International Conference on Oriental Thinking and Fuzzy Logic (pp. 177-196). Switzerland: Springer International Publishing.
[22] Lee, R. D., & Carter, L. (1992). Modeling and forecasting the time series of U.S. mortality. Journal of the American Statistical Association, 87, 659-671. · Zbl 1351.62186
[23] Marszałek, A., & Burczyński, T. (2013). Financial fuzzy time series models based on ordered fuzzy numbers. In W.Pedrycz (ed.) & S.‐M.Chen (ed.) (Eds.), Time Series Analysis, Modelling and Applications (pp. 77-95). Berlin: Springer.
[24] Marszałek, A., & Burczyński, T. (2014). Modeling and forecasting financial time series with ordered fuzzy candlesticks. Information Sciences, 273, 144-155. · Zbl 1414.91425
[25] Pitacco, E., Denuit, M., Haberman, S., & Olivieri, A. (2009). Modelling Longevity Dynamics for Pensions and Annnuity Business. Oxford University Press, New York, https://www.amazon.com/Modelling-Longevity-Dynamics-Pensions-Mathematics/dp/0199547270#reader_0199547270. · Zbl 1163.91005
[26] Prokopowicz, P., & Ślȩzak, D. (2017). Ordered fuzzy numbers: Definitions and operations. In P.Prokopowicz (ed.), J.Czerniak (ed.), D.Mikolajewski (ed.), L.Apiecionek (ed.), & D.Ślȩzak (ed.) (Eds.), Theory and Applications of Ordered Fuzzy Numbers. Studies in Fuzziness and Soft Computing (Vol. 356, pp. 57-79). Cham: Springer. · Zbl 1392.03006
[27] Renshaw, A. E., & Haberman, S. (2003). Lee‐Carter mortality forecasting with age specific enhancement. Insurance: Mathematics and Economics, 33(2), 255-272. · Zbl 1103.91371
[28] Renshaw, A., Haberman, S., & Hatzopoulos, P. (1996). The modelling of recent mortality trends in United Kingdom male assured lives. British Actuarial Journal, 2, 449-477.
[29] Rossa, A., Socha, L., & Szymański, A. (2017). Hybrid Dynamic and Fuzzy Models of Mortality. University of Lodz Press, Lodz.
[30] Szymański, A., & Rossa, A. (2014). Fuzzy mortality model based on Banach algebra. International Journal of Intelligent Technologies and Applied Statistics, 7, 241-265.
[31] Szymański, A., & Rossa, A. (2017). Improvement of fuzzy mortality model by means of algebraic methods. Statistics in Transition, 18, 701-724.
[32] Tuljapurkar, S., Li, N., & Boe, C. (2000). A universal pattern of mortality decline in the G7 countries. Nature, 405, 789-792.
[33] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.