×

Optimal recovery of operators in function \(L\)-spaces. (English) Zbl 1488.46070

A semi-linear space is a linear space lacking the existence of the opposite elements and of the distributive law \((\lambda+\mu)x= \lambda x+\mu x\). An \(L\)-space is a semilinear space \(X\) endowed with a metric \(h_X\) such that (i) \(h_X(\alpha x,\alpha y)=\vert \alpha \vert h_X(x,y)\) and (ii) \(h_X(x+z,y+z)\le h_X(x,y)\) for all \(x,y,z\in X\) and \(\alpha \in\mathbb{R}\). The \(L\)-space \((X,h_X)\) is called isotropic if (ii) holds with equality. An element \(x\in X\) is called convex if \((\alpha+\beta)x= \alpha x+\beta x\) for all \(\alpha,\beta\ge 0\). A typical example is the space \(\Omega(X)\) of all nonempty closed bounded subsets of a normed linear space \(X\) with the Hausdorff metric. In this case, the convex elements are the convex sets in \(\Omega(X)\).
The paper is concerned with the problem of optimal recovery of the operators on the classes \(H^\omega(T,X)\) of continuous functions defined on a metric compact \(T\), taking values in an \(L\)-space \(X\) and having a given majorant \(\omega(t) \) of their modulus of continuity. The operators are recovered based on the values (known with errors) of the functions on a finite set of points.
From the text: “The consideration of operators defined on function \(L\)-spaces allows us to include many important operators acting in the spaces of functions with values in Banach spaces (in particular in the spaces of random processes), spaces of set-valued functions and functions with fuzzy values, and obtain new results on the optimal recovery of such operators.”

MSC:

46E40 Spaces of vector- and operator-valued functions
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
26D10 Inequalities involving derivatives and differential and integral operators
41A44 Best constants in approximation theory
46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
Full Text: DOI

References:

[1] Aseev, S. M., Quasilinear operators and their application in the theory of multivalued mappings, Trudy Mat. Inst. Steklov., 167, 23-52 (1986) · Zbl 0593.46038
[2] Babenko, V.; Babenko, Y.; Parfinovych, N.; Skorokhodov, D., Optimal recovery of integral operators and its applications, J. Complexity, 35, 102-123 (2016) · Zbl 1416.65563 · doi:10.1016/j.jco.2016.02.004
[3] Babenko, V. F., Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions, Math. Notes, 19, 187-193 (1976) · Zbl 0333.41024 · doi:10.1007/BF01437850
[4] Babenko, V. F., On the optimal error bound for cubature formulas on certain classes of continuous functions, Anal. Math., 3, 3-9 (1977) · Zbl 0372.41020 · doi:10.1007/BF02333249
[5] Babenko, V. F., On optimization of weight quadrature formulas, Ukrainian Math. J., 47, 1157-1168 (1995) · Zbl 0885.41020 · doi:10.1007/BF01057706
[6] Babenko, V. F.; Babenko, V. V., Best approximation optimal recovery, and Landau inequalities for derivatives of Hukuhara-type in function L-spaces, J. Appl. Numer. Optim., 1, 167-182 (2019)
[7] Babenko, V. F.; Babenko, V. V.; Polishchuk, M. V., On the optimal recovery of integrals of set-valued functions, Ukrainian Math. J., 67, 1306-1315 (2016) · Zbl 1386.41010 · doi:10.1007/s11253-016-1154-0
[8] Borisovich, Y. G.; Gel’man, B. D.; Myshkis, A. D.; Obukhovskii, V. V., Multivalued mappings, J. Soviet Math., 24, 719-791 (1984) · Zbl 0529.54013 · doi:10.1007/BF01305758
[9] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monogr. Appl. Comput. Math., Cambridge Univ. Press (2004). · Zbl 1059.65122
[10] Chernaya, E. V., Asymptotically exact estimation of the error of weighted cubature formulas optimal in some classes of continuous functions, Ukrainian Math. J., 47, 1606-1618 (1995) · doi:10.1007/BF01060160
[11] Chernaya, E. V., On the optimization of weighted cubature formulae on certain classes of continuous functions, East J. Approx., 1, 47-60 (1995) · Zbl 0848.41023
[12] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press (1991). · Zbl 0714.45002
[13] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific Publishing Company (1994). · Zbl 0873.54019
[14] Drozhzhina, L. V., On quadrature formulas for random processes, Dopovidi Akad. Nauk Ukrain. RSR, Ser. A, 9, 775-777 (1975) · Zbl 0318.60030
[15] D. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and Compact Integral Operators, Mathematics and Its Applications, Springer Netherlands (2002). · Zbl 1023.42001
[16] Godini, G. A., Framework for best simultaneous approximation: Normed almost linear spaces, J. Approx. Theory, 43, 338-358 (1985) · Zbl 0602.41025 · doi:10.1016/0021-9045(85)90110-8
[17] Gruber, P. M., Optimum quantization and its applications, Adv. Math., 186, 456-497 (2004) · Zbl 1062.94012 · doi:10.1016/j.aim.2003.07.017
[18] Hille, E.; Phillips, R., Functional Analysis and Semigroups (1957), Providence, RI: AMS, Providence, RI · Zbl 0078.10004
[19] Kress, R., Linear Integral Equations (2014), New York: Springer, New York · Zbl 1328.45001 · doi:10.1007/978-1-4614-9593-2
[20] Magaril-Il’yaev, G. G.; Osipenko, K. Y., Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error, Sb. Math., 193, 387-407 (2002) · Zbl 1060.42003 · doi:10.1070/SM2002v193n03ABEH000637
[21] Magaril-Il’yaev, G. G.; Osipenko, K. Y., Optimal recovery of the solution of the heat equation from inaccurate data, Sb. Math., 200, 665-682 (2009) · Zbl 1188.35096 · doi:10.1070/SM2009v200n05ABEH004014
[22] Osipenko, K. Y., Optimal Recovery of Analytic Functions (2000), Huntington, New York: Nova Science Publishers, Huntington, New York
[23] L. Plaskota, Noisy Information and Computational Complexity, Cambridge Univ. Press (1996). · Zbl 0923.65101
[24] C. A. Rogers, Packing and Covering, Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge Univ. Press (1964). · Zbl 0176.51401
[25] Schaefer, H., Banach Lattices and Positive Operators (1974), New York-Heidelberg: Springer-Verlag, New York-Heidelberg · Zbl 0296.47023 · doi:10.1007/978-3-642-65970-6
[26] Traub, J. F.; Wozhniakovski, H., A General Theory of Optimal Algorithms (1980), New York-London: Academic Press, New York-London · Zbl 0441.68046
[27] Vahrameev, S. A., Integration in L-spaces, Applied Mathematics and Mathematical Software of Computers, 4547 (1980), Moscow: MSU Publisher, Moscow
[28] Vysk, N. D.; Osipenko, K. Y., Optimal reconstruction of the solution of the wave equation from inaccurate initial data, Math. Notes, 81, 723-733 (2007) · Zbl 1137.93014 · doi:10.1134/S0001434607050203
[29] Warga, J., Optimal Control of Differential and Functional (1972), New York-London: Academic Press, New York-London · Zbl 0253.49001
[30] Zhensykbaev, A. A., Problems of Recovery of Operators (2003), Moscow-Izhevsk: Institute of Computer Studies, Moscow-Izhevsk
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.