×

On third Hankel determinants for subclasses of analytic functions and close-to-convex harmonic mappings. (English) Zbl 1488.30132

Summary: In this paper, we obtain the upper bounds to the third Hankel determinants for convex functions of order \(\alpha\) and bounded turning functions of order \(\alpha\). Furthermore, several relevant results on a new subclass of close-to-convex harmonic mappings are obtained. Connections of the results presented here to those that can be found in the literature are also discussed.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
58E20 Harmonic maps, etc.
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination

References:

[1] [1] Y. Abu Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex functions of order -1/2, Arch. Math. (Basel) 103 (6), 461-471, 2014. · Zbl 1303.30015
[2] [2] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, in: Inequal. Theory and Appl. 6, 1-7, editors: Y. J. Cho, J.K. Kim and S.S. Dragomir, 2010.
[3] [3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (1), 103-107, 2013. · Zbl 1250.30006
[4] [4] D. Bansal, S. Haharana, and J.K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52, 1139-1148, 2015. · Zbl 1328.30005
[5] [5] S.V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univelent mappings and hypergeometric mappings, Rocky Mt. J. Math. 44, 753-777, 2014. · Zbl 1298.30001
[6] [6] D. Bshouty, S.S. Joshi, and S.B. Joshi, On close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 58, 1195-1199, 2013. · Zbl 1277.31005
[7] [7] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, Complex Appl. Oper. Theory 5, 767-774, 2011. · Zbl 1279.30011
[8] [8] D.G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69, 362- 366, 1963. · Zbl 0112.29901
[9] [9] J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60, 354-371, 2015. · Zbl 1312.31003
[10] [10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9, 3-25, 1984. · Zbl 0506.30007
[11] [11] P. Dienes, The Taylor Series, Dover, New York, 1957. · Zbl 0078.05901
[12] [12] P.L. Duren, Univalent functions, Springer Verlag, New York Inc., 1983. · Zbl 0514.30001
[13] [13] P.L. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004. · Zbl 1055.31001
[14] [14] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor, Compos. Math. 7, 20-88, 1940. · JFM 65.0308.02
[15] [15] M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functions, J. London Math. Soc. 8, 85-89, 1933. · Zbl 0006.35302
[16] [16] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal. 4 (52), 2573-2585, 2010. · Zbl 1226.30015
[17] [17] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc. 18 (3), 77-94, 1968. · Zbl 0158.32101
[18] [18] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2), Art. 50, 5 pp, 2006. · Zbl 1134.30310
[19] [19] A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (13), 619-625, 2007. · Zbl 1137.30308
[20] [20] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully starlikeness of harmonic mappings, Complex Var. Elliptic Equ. 59, 539-552, 2014. · Zbl 1295.31005
[21] [21] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101, 89-95, 1987. · Zbl 0635.30019
[22] [22] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49, 420-433, 1987. · Zbl 0635.30020
[23] [23] S.K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, Art. 281, 17 pp, 2013. · Zbl 1302.30018
[24] [24] R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85, 225-230, 1982. · Zbl 0464.30019
[25] [25] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Am. Math. Soc. 87, 251-257, 1983. · Zbl 0488.30010
[26] [26] A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Am. Math. Soc. 21, 545-552, 1969. · Zbl 0186.39901
[27] [27] P.T. Mocanu, Sufficient conditions of univalence for complex functions in the class C1, Rev. Anal. Numér. Théor. Approx. 10, 75-79, 1981. · Zbl 0481.30014
[28] [28] P.T. Mocanu, Injectivity conditions in the complex plane, Complex Appl. Oper. Theory 5, 759-766, 2011. · Zbl 1279.30020
[29] [29] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 59, 204-216, 2014. · Zbl 1291.30091
[30] [30] H. Orhan and P. Zaprawa, Third Hankel determinants for starlike and convex functions, Bull. Korean Math. Soc. 55, 165-173, 2018. · Zbl 1394.30010
[31] [31] C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. Lond. Math. Soc. 41, 111-122, 1966. · Zbl 0138.29801
[32] [32] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14, 108-112, 1967. · Zbl 0165.09602
[33] [33] S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in: Topics in modern function theory, Ramanujan Math. Soc. Lect. Notes Ser. 19, 267-333, Ramanujan Math. Soc., Mysore, 2013. · Zbl 1318.30039
[34] [34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, Comput. Methods Funct. Theory 12, 669-685, 2012. · Zbl 1257.30012
[35] [35] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain classes of univalent harmonic mappings, Mediterr. J. Math. 12, 647-665, 2015. · Zbl 1337.31004
[36] [36] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013, Art. 412, 8 pp., 2013. · Zbl 1291.30106
[37] [37] T.J. Suffridge, Some special classes of conformal mappings, in: Handbook of complex analysis: geometric function theory (Edited by Kühnau), 2, 309-338, Elsevier, Amsterdam, 2005. · Zbl 1069.30025
[38] [38] Y. Sun, Y. Jiang, and A. Rasila, On a subclass of close-to-convex harmonic mappings, Complex Var. Elliptic Equ. 61, 1627-1643, 2016. · Zbl 1345.31004
[39] [39] D. Vamshee Krishna, B. Venkateswarlu, and T. RamReddy, Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34, 121-127, 2015. · Zbl 1353.30013
[40] [40] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (1), Art. 19, 10 pp., 2017. · Zbl 1362.30027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.