×

A novel synchronization-based approach for functional connectivity analysis. (English) Zbl 1377.92018

Summary: Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs) to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

MSC:

92C20 Neural biology
90B15 Stochastic network models in operations research

References:

[1] Sporns, O.; Betzel, R. F., Modular brain networks, Annual Review of Psychology, 67, 613-640 (2016) · doi:10.1146/annurev-psych-122414-033634
[2] Bullmore, E.; Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, 10, 4, 186-198 (2009) · doi:10.1038/nrn2618
[3] Rubinov, M.; Sporns, O., Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, 52, 3, 1059-1069 (2010) · doi:10.1016/j.neuroimage.2009.10.003
[4] Friston, K. J., Functional and effective connectivity: a review, Brain Connectivity, 1, 1, 13-36 (2011) · doi:10.1089/brain.2011.0008
[5] Bassett, D. S.; Bullmore, E. T., Small-world brain networks, The Neuroscientist, 12, 6, 512-523 (2006) · doi:10.1177/1073858406293182
[6] van den Heuvel, M. P.; Sporns, O., Network hubs in the human brain, Trends in Cognitive Sciences, 17, 12, 683-696 (2013) · doi:10.1016/j.tics.2013.09.012
[7] Braun, U.; Muldoon, S. F.; Bassett, D. S., On human brain networks in health and disease, eLS, 2015
[8] Sun, F. T.; Miller, L. M.; D’Esposito, M., Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data, NeuroImage, 21, 2, 647-658 (2004) · doi:10.1016/j.neuroimage.2003.09.056
[9] Liang, X.; Wang, J.; Yan, C.; Shu, N.; Xu, K.; Gong, G.; He, Y., Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study, PLoS ONE, 7, 3 (2012) · doi:10.1371/journal.pone.0032766
[10] Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D.; Woolrich, M. W., Network modelling methods for FMRI, NeuroImage, 54, 2, 875-891 (2011) · doi:10.1016/j.neuroimage.2010.08.063
[11] Deco, G.; Jirsa, V. K.; Robinson, P. A.; Breakspear, M.; Friston, K., The dynamic brain: from spiking neurons to neural masses and cortical fields, PLoS Computational Biology, 4, 8 (2008) · doi:10.1371/journal.pcbi.1000092
[12] Pereda, E.; Quiroga, R. Q.; Bhattacharya, J., Nonlinear multivariate analysis of neurophysiological signals, Progress in Neurobiology, 77, 1-2, 1-37 (2005) · doi:10.1016/j.pneurobio.2005.10.003
[13] Cole, M. W.; Bassett, D. S.; Power, J. D.; Braver, T. S.; Petersen, S. E., Intrinsic and task-evoked network architectures of the human brain, Neuron, 83, 1, 238-251 (2014) · doi:10.1016/j.neuron.2014.05.014
[14] Bullmore, E.; Sporns, O., The economy of brain network organization, Nature Reviews Neuroscience, 13, 5, 336-349 (2012) · doi:10.1038/nrn3214
[15] Baker, G. L.; Gollub, J. P., Chaotic Dynamics (1996), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0887.58035 · doi:10.1017/CBO9781139170864.014
[16] Marwan, N.; Kurths, J., Nonlinear analysis of bivariate data with cross recurrence plots, Physics Letters A, 302, 5-6, 299-307 (2002) · Zbl 0998.62518 · doi:10.1016/S0375-9601(02)01170-2
[17] Bassett, D. S.; Wymbs, N. F.; Rombach, M. P.; Porter, M. A.; Mucha, P. J.; Grafton, S. T., Task-Based Core-Periphery Organization of Human Brain Dynamics, PLoS Computational Biology, 9, 9 (2013) · doi:10.1371/journal.pcbi.1003171
[18] Telesford, Q. K.; Lynall, M.-E.; Vettel, J.; Miller, M. B.; Grafton, S. T.; Bassett, D. S., Detection of functional brain network reconfiguration during task-driven cognitive states, NeuroImage, 142, 198-210 (2016) · doi:10.1016/j.neuroimage.2016.05.078
[19] DATA, D., Structured Clinical Interview for DSM-IV Axis I Disorders (1997), Washington, DC, USA: American Psychiatric Press, Washington, DC, USA
[20] Hollingshead, A. B., Four factor index of social status, 1975
[21] Oldfield, R. C., The assessment and analysis of handedness: the Edinburgh inventory, Neuropsychologia, 9, 1, 97-113 (1971) · doi:10.1016/0028-3932(71)90067-4
[22] Orsini, A.; Laicardi, C., Factor structure of the Italian version of the WAIS-R compared with the American standardization, Perceptual and Motor Skills, 90, 4, 1091-1100 (2000) · doi:10.2466/pms.2000.90.3c.1091
[23] Fan, L.; Li, H.; Zhuo, J.; Zhang, Y.; Wang, J.; Chen, L.; Yang, Z.; Chu, C.; Xie, S.; Laird, A. R.; Fox, P. T.; Eickhoff, S. B.; Yu, C.; Jiang, T., The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture, Cerebral Cortex, 26, 8, 3508-3526 (2016) · doi:10.1093/cercor/bhw157
[24] Takens, F.; Rand, D. A.; Young, L. S., Detecting strange attractors in turbulence, Dynamical systems and Turbulence. Dynamical systems and Turbulence, Lecture Note in Mathematics, 898, 366-381 (1981), Berlin, Germany: Springer, Berlin, Germany · Zbl 0513.58032 · doi:10.1007/BFb0091924
[25] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Physical Review A: Atomic, Molecular and Optical Physics, 33, 2, 1134-1140 (1986) · Zbl 1184.37027 · doi:10.1103/PhysRevA.33.1134
[26] Kennel, M. B.; Brown, R.; Abarbanel, H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A: Atomic, Molecular and Optical Physics, 45, 6, 3403-3411 (1992) · doi:10.1103/PhysRevA.45.3403
[27] Mindlin, G. B.; Gilmore, R., Topological analysis and synthesis of chaotic time series, Physica D: Nonlinear Phenomena, 58, 1-4, 229-242 (1992) · Zbl 1194.37135 · doi:10.1016/0167-2789(92)90111-Y
[28] Thiel, M.; Romano, M. C.; Kurths, J.; Meucci, R.; Allaria, E.; Arecchi, F. T., Influence of observational noise on the recurrence quantification analysis, Physica D: Nonlinear Phenomena, 171, 3, 138-152 (2002) · Zbl 1051.62089 · doi:10.1016/S0167-2789(02)00586-9
[29] Marwan, N.; Romano, M. C.; Thiel, M.; Kurths, J., Recurrence plots for the analysis of complex systems, Physics Reports, 438, 5-6, 237-329 (2007) · doi:10.1016/j.physrep.2006.11.001
[30] Marwan, N.; Thiel, M.; Nowaczyk, N. R., Cross recurrence plot based synchronization of time series, Nonlinear Processes in Geophysics, 9, 3-4, 325-331 (2002) · doi:10.5194/npg-9-325-2002
[31] Newman, M. E. J., Modularity and community structure in networks, Proceedings of the National Acadamy of Sciences of the United States of America, 103, 23, 8577-8582 (2006) · doi:10.1073/pnas.0601602103
[32] Rosvall, M.; Bergstrom, C. T., Maps of random walks on complex networks reveal community structure, Proceedings of the National Acadamy of Sciences of the United States of America, 105, 4, 1118-1123 (2008) · doi:10.1073/pnas.0706851105
[33] Blondel, V. D.; Guillaume, J.; Lambiotte, R.; Lefebvre, E., Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, 2008, 10 (2008) · Zbl 1459.91130 · doi:10.1088/1742-5468/2008/10/P10008
[34] Alexander-Bloch, A.; Lambiotte, R.; Roberts, B.; Giedd, J.; Gogtay, N.; Bullmore, E., The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia, NeuroImage, 59, 4, 3889-3900 (2012) · doi:10.1016/j.neuroimage.2011.11.035
[35] Kuncheva, L. I.; Hadjitodorov, S. T., Using diversity in cluster ensembles, Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, SMC 2004 · doi:10.1109/ICSMC.2004.1399790
[36] Ptak, R.; Schnider, A.; Fellrath, J., The Dorsal Frontoparietal Network: A Core System for Emulated Action, Trends in Cognitive Sciences, 21, 8, 589-599 (2017) · doi:10.1016/j.tics.2017.05.002
[37] Callicott, J. H.; Ramsey, N. F.; Tallent, K.; Bertolino, A.; Knable, M. B.; Coppola, R.; Goldberg, T.; Van Gelderen, P.; Mattay, V. S.; Frank, J. A.; Moonen, C. T. W.; Weinberger, D. R., Functional magnetic resonance imaging brain mapping in psychiatry: Methodological issues illustrated in a study of working memory in schizophrenia, Neuropsychopharmacology, 18, 3, 186-196 (1998) · doi:10.1016/S0893-133X(97)00096-1
[38] Sambataro, F.; Blasi, G.; Fazio, L.; Caforio, G.; Taurisano, P.; Romano, R.; Di Giorgio, A.; Gelao, B.; Lo Bianco, L.; Papazacharias, A.; Popolizio, T.; Nardini, M.; Bertolino, A., Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia, Neuropsychopharmacology, 35, 4, 904-912 (2010) · doi:10.1038/npp.2009.192
[39] Fox, K. C. R.; Spreng, R. N.; Ellamil, M.; Andrews-Hanna, J. R.; Christoff, K., The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes, NeuroImage, 111, 611-621 (2015) · doi:10.1016/j.neuroimage.2015.02.039
[40] Qin, P.; Northoff, G., How is our self related to midline regions and the default-mode network?, NeuroImage, 57, 3, 1221-1233 (2011) · doi:10.1016/j.neuroimage.2011.05.028
[41] Scimeca, J. M.; Badre, D., Striatal Contributions to Declarative Memory Retrieval, Neuron, 75, 3, 380-392 (2012) · doi:10.1016/j.neuron.2012.07.014
[42] Peräkylä, J.; Sun, L.; Lehtimäki, K.; Peltola, J.; Öhman, J.; Möttönen, T.; Ogawa, K. H.; Hartikainen, K. M., Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory, Cognitive Neuroscience, 1-13 (2017) · doi:10.1162/jocn_a_01176
[43] Callicott, J. H.; Mattay, V. S.; Bertolino, A.; Finn, K.; Coppola, R.; Frank, J. A.; Goldberg, T. E.; Weinberger, D. R., Physiological characteristics of capacity constraints in working memory as revealed by functional MRI, Cerebral Cortex, 9, 1, 20-26 (1999) · doi:10.1093/cercor/9.1.20
[44] Bassett, D. S.; Greenfield, D. L.; Meyer-Lindenberg, A.; Weinberger, D. R.; Moore, S. W.; Bullmore, E. T., Efficient physical embedding of topologically complex information processing networks in brains and computer circuits, PLoS Computational Biology, 6, 4 (2010) · doi:10.1371/journal.pcbi.1000748
[45] Meunier, D.; Lambiotte, R.; Bullmore, E. T., Modular and hierarchically modular organization of brain networks, Frontiers in Neuroscience, 4, 200 (2010) · doi:10.3389/fnins.2010.00200
[46] Fair, D. A.; Cohen, A. L.; Power, J. D.; Dosenbach, N. U.; Church, J. A.; Miezin, F. M.; Schlaggar, B. L.; Petersen, S. E., Functional brain networks develop from a “local to distributed” organization, PLoS Computational Biology, 5, 5 (2009) · doi:10.1371/journal.pcbi.1000381
[47] Alexander-Bloch, A. F.; Gogtay, N.; Meunier, D.; Birn, R.; Clasen, L.; Lalonde, F.; Lenroot, R.; Giedd, J.; Bullmore, E. T., Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia, Frontiers in Systems Neuroscience, 4, article 147 (2010) · doi:10.3389/fnsys.2010.00147
[48] Wang, J.; Zuo, X.; Dai, Z.; Xia, M.; Zhao, Z.; Zhao, X.; Jia, J.; Han, Y.; He, Y., Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease, Biological Psychiatry, 73, 5, 472-481 (2013) · doi:10.1016/j.biopsych.2012.03.026
[49] Rudie, J. D.; Brown, J. A.; Beck-Pancer, D.; Hernandez, L. M.; Dennis, E. L.; Thompson, P. M.; Bookheimer, S. Y.; Dapretto, M., Altered functional and structural brain network organization in autism, NeuroImage: Clinical, 2, 1, 79-94 (2013) · doi:10.1016/j.nicl.2012.11.006
[50] Bassett, D. S.; Wymbs, N. F.; Porter, M. A.; Mucha, P. J.; Carlson, J. M.; Grafton, S. T., Dynamic reconfiguration of human brain networks during learning, Proceedings of the National Acadamy of Sciences of the United States of America, 108, 18, 7641-7646 (2011) · doi:10.1073/pnas.1018985108
[51] Braun, U.; Schäfer, A.; Walter, H.; Erk, S.; Romanczuk-Seiferth, N.; Haddad, L.; Schweiger, J. I.; Grimm, O.; Heinz, A.; Tost, H.; Meyer-Lindenberg, A.; Bassett, D. S., Dynamic reconfiguration of frontal brain networks during executive cognition in humans, Proceedings of the National Acadamy of Sciences of the United States of America, 112, 37, 11678-11683 (2015) · doi:10.1073/pnas.1422487112
[52] Xie, X.; Cao, Z.; Weng, X., Spatiotemporal nonlinearity in resting-state fMRI of the human brain, NeuroImage, 40, 4, 1672-1685 (2008) · doi:10.1016/j.neuroimage.2008.01.007
[53] Bianciardi, M.; Sirabella, P.; Hagberg, G. E.; Giuliani, A.; Zbilut, J. P.; Colosimo, A., Model-free analysis of brain fMRI data by recurrence quantification, NeuroImage, 37, 2, 489-503 (2007) · doi:10.1016/j.neuroimage.2007.05.025
[54] Stam, C. J., Nonlinear dynamical analysis of EEG and MEG: review of an emerging field, Clinical Neurophysiology, 116, 10, 2266-2301 (2005) · doi:10.1016/j.clinph.2005.06.011
[55] Acharya, U. R.; Sree, S. V.; Chattopadhyay, S.; Yu, W.; Ang, P. C. A., Application of recurrence quantification analysis for the automated identification of epileptic EEG signals, International Journal of Neural Systems, 21, 3, 199-211 (2011) · doi:10.1142/S0129065711002808
[56] McCarty, D. E.; Punjabi, N. M.; Kim, P. Y.; Frilot, C.; Marino, A. A., Recurrence analysis of the EEG during sleep accurately identifies subjects with mental health symptoms, Psychiatry Research: Neuroimaging, 224, 3, 335-340 (2014) · doi:10.1016/j.pscychresns.2014.10.004
[57] Timothy, L. T.; Krishna, B. M.; Nair, U., Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis, International Journal of Psychophysiology, 120, 86-95 (2017) · doi:10.1016/j.ijpsycho.2017.07.006
[58] Jones, D. T.; Vemuri, P.; Murphy, M. C.; Gunter, J. L.; Senjem, M. L.; Machulda, M. M.; Przybelski, S. A.; Gregg, B. E.; Kantarci, K.; Knopman, D. S.; Boeve, B. F.; Petersen, R. C.; Jack, C. R., Non-stationarity in the “resting brain”s“ modular architecture, PLoS ONE, 7, 6 (2012) · doi:10.1371/journal.pone.0039731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.