×

A systematic review of simulation procedures for fMRI connectivity studies. (English) Zbl 1422.62359

Summary: The strategies used to study functional or effective connectivity in fMRI data are mainly based on the application of correlation studies, structural equation models (SEM), dynamic causal modelling (DCM), or the Granger causality model (GCM), while some contributions focus their attention on simulation studies. Although the tradition is scarce, this increase of the latter studies has become steeper in the last five years. In this work, we present a systematic study and analysis of simulation studies with fMRI data for the analysis of brain connectivity. We conducted a search on the Web of Science (WoS) and PubMed and eventually we reviewed a total of 134 studies. The most remarkable finding is a lack of information on the simulation procedure. For example, 17 works did not specify the model used to generate the signal, 36 did not indicate the model’s white noise addition in the signal generated, and 52 did not detail the design under which the data had been generated. Under these circumstances, it is difficult to compare the different contributions in order to identify the best strategies to simulate data for the study of brain connectivity in fMRI works. However, it is important to note the emergence of the so-called third-generation simulation models, which consider the brain as a complex, dynamical system model. This kind of model to simulate brain activity will change the state of the art in this matter, and it might be a good tool to assess the different analytical procedures to study effective connectivity.

MSC:

62P15 Applications of statistics to psychology
62H35 Image analysis in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] * C. Arand, E. Scheller, B. Seeber, J. Timmer, S. Klöppel and B. Schelter, Assessing parameter identifiability for dynamic causal modeling of fMRI data, Frontiers in Neuroscience 9 (2015), 1-13. doi:10.3389/fnins.2015.00043.
[2] M. R. Arbabshirani, E. Damaraju, R. Phlypo, S. Plis, E. Allen, S. Ma, D. Mathalon, A. Preda, J. G. Vaidya, T. Adali and V. D. Calhoun, Impact of autocorrelation on functional connectivity, NeuroImage 102 (2014), 294-308. doi.org/10.1016/j.neuroimage.2014.07.045.
[3] E. A. Aponte, S. Raman, B. Sengupta, W. D. Penny, K. E. Stephan and J. Heinzle, mpdcm: a toolbox for massively parallel dynamic causal modeling, J. Neurosci. Methods 257 (2016), 7-16. doi:10.1016/j.jneumeth.2015.09.009
[4] * R. Baumgartner and R. Somorjai, Graphical display of fMRI data: visualizing multidimensional space, Magnetic Resonance Imaging 19(2) (2001), 283-286. doi:10.1016/S0730-725X(01)00296-X.
[5] G. Barbalat, V. Chambon, P. J. D. Domenech, C. Ody, E. Koechlin, N. Franck and C. Farrer, Impaired hierarchical control within the lateral prefrontal cortex in schizophrenia, Biological Psychiatry 70 (2011), 73-80. doi:10.1016/j.biopsych.2011.02.009.
[6] L. Barnett and A. K. Seth, The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference, J. Neurosci. Methods 223 (2014), 50-68. doi: http://dx.doi.org/10.1016/j.jneumeth.2013.10.018.
[7] L. Barnett and A. K. Seth, Granger causality for state-space models, Physical Review E. 91 (2015), 040101. doi:10.1103/PhysRevE.91.040101.
[8] * P. Bellec, Y. Benhajali, F. Carbonell, C. Dansereau, G. Albouy, M. Pelland, C. Craddock, O. Collignon, J. Doyon, E. Stip and P. Orban, Impact of the resolution
[9] * P. Bellec, G. Marrelec and H. Benali, A bootstrap test to investigate changes in brain connectivity for functional MRI, Statistica Sinica 18 (2008), 1253-1268. · Zbl 1293.62062
[10] * P. Bellec, V. Perlbarg and A. C. Evans, Bootstrap generation and evaluation of an fMRI simulation database, Magnetic Resonance Imaging 27(10) (2009), 1382-1396. doi:10.1016/j.mri.2009.05.034.
[11] * A. M. Beltz and P. C. M. Molenaar, A posteriori model validation for the temporal order of directed functional connectivity maps, Frontiers in Neuroscience 9 (2015), 1-15. doi:10.3389/fnins.2015.00304.
[12] * I. Bojak, T. F. Oostendorp, A. T. Reid and R. Kötter, Connecting mean field models of neural activity to EEG and fMRI data, Brain Topography 23 (2010), 139-149. doi:10.1007/s10548-010-0140-3.
[13] R. N. Boubela, W. Huf, K. Kalcher, R. Sladky, P. Filzmoser, L. Pezawas, S. Kasper, C. Windischberger and E. Moser, A highly parallelized framework for computationally intensive MR data analysis, Magnetic Resonance Materials in Physics, Biology and Medicine 25(4) (2012), 313-320. doi:10.1007/s10334-011-0290-7.
[14] * F. D. Bowman, L. Zhang, G. Derado and S. Chen, Determining functional connectivity using fMRI data with diffusion-based anatomical weighting, NeuroImage 62(3) (2012), 1769-1779. doi:10.1016/j.neuroimage.2012.05.032.
[15] * K. Bush and J. Cisler, Deconvolution filtering: temporal smoothing revisited, Magnetic Resonance Imaging 32(6) (2014), 721-735. doi:10.1016/j.mri.2014.03.002.
[16] * K. Bush, J. Cisler, J. Bian, G. Hazaroglu, O. Hazaroglu and C. Kilts, Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis, Magnetic Resonance Imaging 33(10) (2015), 1314-1323. doi:10.1016/j.mri.2015.07.007.
[17] * K. Bush, S. Zhou, J. Cisler, J. Bian, O. Hazaroglu, K. Gillispie, K. Yoshigoe and C. Kilts, A deconvolution-based approach to identifying large-scale effective connectivity, Magnetic Resonance Imaging 33(10) (2015), 1290-1298. doi:10.1016/j.mri.2015.07.015.
[18] R. B. Buxton, E. C. Wong and L. R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: the balloon model, Magnetic Resonance in Medicine 39 (1998), 855-864.
[19] * J. Cabral, E. Hugues, O. Sporns and G. Deco, Role of local network oscillations in resting-state functional connectivity, NeuroImage 57(1) (2011), 130-139. doi:10.1016/j.neuroimage.2011.04.010.
[20] J. Carp, The secret lives of experiments: methods reporting in the fMRI literature, NeuroImage 63(1) (2012), 289-300. doi:10.1016/j.neuroimage.2012.07.004.
[21] P. A. Carpenter, M. A. Just, T. A. Keller, W. F. Eddy and K. R. Thulborn, Timecourse of fMRI-activation in language and spatial networks during sentence comprehension, NeuroImage 10(2) (1999), 216-224.
[22] * C. Chang and G. H. Glover, Time-frequency dynamics of resting-state brain connectivity measured with fMRI, NeuroImage 50(1) (2010), 81-98. doi:10.1016/j.neuroimage.2009.12.011.
[23] G. Chen, D. R. Glen, Z. S. Saad, J. P. Hamilton, M. E. Thomason, I. H. Gotlib and R. W. Cox, Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis, Computers in Biology and Medicine 41 (2011), 1142-1155. doi:10.1016/j.compbiomed.2011.09.004.
[24] * S. Chen, J. Kang, Y. Xing and G. Wang, A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks, Human Brain Mapping 5206 (2015), 5196-5206. doi:10.1002/hbm.23007.
[25] * S. Chen, J. Kang and G. Wang, An empirical Bayes normalization method for connectivity metrics in resting state fMRI, Frontiers in Neuroscience 9 (2015), 1-11. doi:10.3389/fnins.2015.00316.
[26] * T. Chen, S. Ryali, S. Qin and V. Menon, Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts, NeuroImage 82 (2013), 87-100. doi:10.1016/j.neuroimage.2013.05.118.
[27] W. Chiong, S. M. Wilson, M. D’Esposito, A. S. Kayser, S. N. Grossman, P. Poorzand, W. W. Seeley, B. L. Miller and K. P. Rankin, The salience network causally influences default mode network activity during moral reasoning, Brain 136 (2013), 1929-1941. doi:10.1093/brain/awt066.
[28] * J. M. Cisler, K. Bush and J. S. Steele, A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI, NeuroImage 84 (2014), 1042-1052. doi:10.1016/j.neuroimage.2013.09.018.
[29] * I. Cribben, R. Haraldsdottir, L. Y. Atlas, T. D. Wager and M. A. Lindquist, Dynamic connectivity regression: determining state-related changes in brain
[30] * I. Cribben, T. D. Wager and M. A. Lindquist, Detecting functional connectivity change points for single-subject fMRI data, Frontiers in Computational Neuroscience 7(October) (2013), 143. doi:10.3389/fncom.2013.00143.
[31] * C. E. Davey, D. B. Grayden, M. Gavrilescu, G. F. Egan and L. A. Johnston, The equivalence of linear Gaussian connectivity techniques, Human Brain Mapping 34(9) (2013), 1999-2014. doi:10.1002/hbm.22043.
[32] * J. Daunizeau, K. E. Stephan and K. J. Friston, Stochastic dynamic causal modelling of fMRI data: should we care about neural noise? NeuroImage 62(1) (2012), 464-481. doi:10.1016/j.neuroimage.2012.04.061.
[33] * C. E. Davey, D. B. Grayden, G. F. Egan and L. A. Johnston, Filtering induces correlation in fMRI resting state data, NeuroImage 64(1) (2013), 728-740. doi:10.1016/j.neuroimage.2012.08.022.
[34] * G. de Hollander, M. C. Keuken and B. U. Forstmann, The subcortical cocktail problem; mixed signals from the subthalamic nucleus and substantia nigra, PLoS ONE 10(3) (2015), e0120572. doi:10.1371/journal.pone.0120572.
[35] G. de Marco, B. Devauchelle and P. Berquin, Brain functional modeling, what do we measure with fMRI data? Neuroscience Research 64 (2009a), 12-19. doi:10.1016/j.neures.2009.01.015.
[36] G. de Marco, P. Vrignaud, C. Destrieux, D. de Marco, S. Testelin, B. Devauchelle and P. Berquin, Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas, Magnetic Resonance Imaging 27 (2009b), 1-12. doi:10.1016/j.mri.2008.05.003.
[37] * G. Deco and V. K. Jirsa, Ongoing cortical activity at rest: criticality, multistability, and ghost attractors, J. Neurosci. 32 (2012), 3366-3375. doi:10.1523/JNEUROSCI.2523-11.2012.
[38] G. Deco, V. K. Jirsa and A. R. McIntosh, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nature Reviews 12(1) (2011), 43-56. doi:10.1038/nrn2961.
[39] * G. Deco, A. Ponce-Alvarez, D. Mantini, G. L. Romani, P. Hagmann and M. Corbetta, Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations, J. Neurosci. 33 (2013), 11239-11252. doi:10.1523/JNEUROSCI.1091-13.2013.
[40] * O. Demirci, M. C. Stevens, N. C. Andreasen, A. Michael, J. Liu, T. White, G. D. Pearlson, V. P. Clark and V. D. Calhoun, Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls, NeuroImage 46(2) (2009), 419-431. doi:10.1016/j.neuroimage.2009.02.014.
[41] G. Deshpande and X. Hu, Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis, Brain Connectivity 2 (2012), 235-245. doi:10.1089/brain.2012.0091.
[42] * G. Deshpande, S. LaConte, G. A. James, S. Peltier and X. Hu, Multivariate granger causality analysis of fMRI data, Human Brain Mapping 30 (2009), 1361-1373. doi:10.1002/hbm.20606.
[43] G. Deshpande, L. E. Libero, K. R. Sreenivasan, H. D. Deshpande and R. K. Kana, Identification of neural connectivity signatures of autism using machine learning, Frontiers in Human Neuroscience 7 (2013), 670. doi:10.3389/fnhum.2013.00670.
[44] G. Deshpande, P. Santhanam and X. Hu, Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data, NeuroImage 54 (2011), 1043-1052. doi:10.1016/j.neuroimage.2010.09.024.
[45] * G. Deshpande, K. Sathian and X. Hu, Assessing and compensating for zero-lag correlation effects in time-lagged granger causality analysis of fMRI, IEEE Trans. Biomedical Engineering 57 (2010a), 1446-1456. doi:10.1109/TBME.2009.2037808.
[46] * G. Deshpande, K. Sathian and X. Hu, Effect of hemodynamic variability on Granger causality analysis of fMRI, NeuroImage 52 (2010b), 884-896. doi:10.1016/j.neuroimage.2009.11.060.
[47] A. S. Dick, A. Solodkin and S. L. Small, Neural development of networks for audiovisual speech comprehension, Brain & Language 114 (2010), 101-114. doi:10.1016/j.bandl.2009.08.005.
[48] * H. Eavani, T. D. Satterthwaite, R. Filipovych, R. E. Gur, R. C. Gur and C. Davatzikos, Identifying sparse connectivity patterns in the brain using restingstate fMRI, NeuroImage 105 (2015), 286-299. doi:10.1016/j.neuroimage.2014.09.058.
[49] * E. B. Erhardt, E. A. Allen, Y. Wei, T. Eichele and V. D. Calhoun, SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability, NeuroImage 59(4) (2012), 4160-4167. doi:10.1016/j.neuroimage.2011.11.088.
[50] * F. Esposito and R. Goebel, Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme, Current Opinion in Neurology 24(4) (2011), 378-385. doi:10.1097/WCO.0b013e32834897a5.
[51] K. J. Friston, Functional and effective connectivity in neuroimaging: a synthesis, Human Brain Mapping 2 (1994), 56-78. doi:10.1002/hbm.460020107.
[52] K. J. Friston, L. Harrison and W. Penny, Dynamic causal modeling, NeuroImage 19 (2003), 1273-1302. doi:10.1016/S1053-8119(03)00202-7.
[53] * K. J. Friston, J. Kahan, B. Biswal and A. Razi, A DCM for resting state fMRI, NeuroImage 94 (2014), 396-407. doi:10.1016/j.neuroimage.2013.12.009.
[54] * K. J. Friston, J. Kahan, A. Razi, K. E. Stephan and O. Sporns, On nodes and modes in resting state fMRI, NeuroImage 99 (2014), 533-547. doi:10.1016/j.neuroimage.2014.05.056.
[55] * M. Fukushima, O. Yamashita, T. R. Knösche and M. Aki Sato, MEG source reconstruction based on identification of directed source interactions on wholebrain anatomical networks, NeuroImage 105 (2015), 408-427. doi:10.1016/j.neuroimage.2014.09.066.
[56] * S. Fürtinger, J. C. Zinn and K. Simonyan, A neural population model incorporating dopaminergic neurotransmission during complex voluntary behaviors, PLoS Computational Biology 10(11) (2014), e1003924. doi:10.1371/journal.pcbi.1003924.
[57] K. M. Gates, P. C. M. Molenaar, F. G. Hillary, N. Ram and M. J. Rovine, Automatic search for fMRI connectivity mapping: an alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM, NeuroImage 50 (2010), 1118-1125. doi:10.1016/j.neuroimage.2009.12.117.
[58] * K. M. Gates, P. C. M. Molenaar, F. G. Hillary and S. Slobounov, Extended unified SEM approach for modeling event-related fMRI data, NeuroImage 54(2) (2011), 1151-1158. doi:10.1016/j.neuroimage.2010.08.051.
[59] * R. Goebel, A. Roebroeck, D. S. Kim and E. Formisano, Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping, Magnetic Resonance Imaging 21 (2003), 1251-1261. doi:10.1016/j.mri.2003.08.026.
[60] * A.-M. Golestani and B. G. Goodyear, A resting-state connectivity metric Simulation in fMRI Connectivity Studies 57
[61] L. Haase, M. Wang, E. Green and C. Murphy, Functional connectivity during recognition memory in individuals genetically at risk for Alzheimer’s disease, Human Brain Mapping 34 (2013), 530-542. doi:10.1002/hbm.21451.
[62] * M. Havlicek, J. Jan, M. Brazdil and V. D. Calhoun, Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data, NeuroImage 53(1) (2010), 65-77. doi:10.1016/j.neuroimage.2010.05.063.
[63] * M. Havlicek, A. Roebroeck, K. Friston, A. Gardumi, D. Ivanov and K. Uludag, Physiologically informed dynamic causal modeling of fMRI data, NeuroImage 122 (2015), 355-372. doi:10.1016/j.neuroimage.2015.07.078.
[64] Y. He and A. Evans, Graph theoretical modeling of brain connectivity, Current Opinion in Neurology 23(4) (2010), 341-350. doi:10.1097/WCO.0b013e32833aa567.
[65] * D. Hemmelmann, L. Leistritz, H. Witte and M. Galicki, Identification of neural activity based on fMRI data: a simulation study, J. Physiology, Paris 103(6) (2009), 353-360. doi:10.1016/j.jphysparis.2009.05.008.
[66] S. A. Hillyard, H. Hinrichs, C. Tempelmann, S. T. Morgan, J. C. Hansen, H. Scheich and H. J. Heinze, Combining steady-state visual evoked potentials and fMRI to localize brain activity during selective attention, Human Brain Mapping 5(4) (1997), 287-292.
[67] * M. Hinne, L. Ambrogioni, R. J. Janssen, T. Heskes and M. A. J. van Gerven, Structurally-informed Bayesian functional connectivity analysis, NeuroImage 86 (2014), 294-305. doi:10.1016/j.neuroimage.2013.09.075.
[68] * M. Hinne, R. J. Janssen, T. Heskes and M. A. J. van Gerven, Bayesian estimation of conditional independence graphs improves functional connectivity estimates, PLoS Computational Biology 11(11) (2015), 1-26. doi:10.1371/journal.pcbi.1004534.
[69] * B. Horwitz, C. Hwang and J. Alstott, Interpreting the effects of altered brain anatomical connectivity on fMRI functional connectivity: a role for computational neural modeling, Frontiers in Human Neuroscience 7(November) (2013), 649. doi:10.3389/fnhum.2013.00649.
[70] C. S. Inman, G. A. James, S. Hamann, J. K. Rajendra, G. Pagnoni and A. J. Butler, Altered resting-state effective connectivity of fronto-parietal motor control
[71] * S. P. Iyer, I. Shafran, D. Grayson, K. Gates, J. T. Nigg and D. A. Fair, Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm, NeuroImage 75 (2013), 165-175. doi:10.1016/j.neuroimage.2013.02.054.
[72] G. A. James, M. E. Kelley, R. C. Craddock, P. E. Holtzheimer, B. W. Dunlop, C. B. Nemeroff, H. S. Mayberg and X. P. Hu, Exploratory structural equation modeling of resting-state fMRI: applicability of group models to individual subjects, NeuroImage 45 (2009), 778-787. doi:10.1016/j.neuroimage.2008.12.049.
[73] * S. E. Joel, B. S. Caffo, P. C. M. Van Zijl and J. J. Pekar, On the relationship between seed-based and ICA-based measures of functional connectivity, Magnetic Resonance in Medicine 66 (2011), 644-657. doi:10.1002/mrm.22818.
[74] * T. B. Jones, P. A. Bandettini and R. M. Birn, Integration of motion correction and physiological noise regression in fMRI, NeuroImage 42(2) (2008), 582-590. doi:10.1016/j.neuroimage.2008.05.019.
[75] * S. Kadkhodaeian Bakhtiari and G.-A. Hossein-Zadeh, Subspace-based identification algorithm for characterizing causal networks in resting brain, NeuroImage 60(2) (2012), 1236-1249. doi:10.1016/j.neuroimage.2011.12.075.
[76] * M. Karaman, A. S. Nencka, I. P. Bruce and D. B. Rowe, Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data, Brain Connectivity 4(9) (2014), 649-661. doi:10.1089/brain.2014.0278.
[77] * S. J. Kiebel, S. Klöppel, N. Weiskopf and K. J. Friston, Dynamic causal modeling: a generative model of slice timing in fMRI, NeuroImage 34(4) (2007), 1487-1496. doi:10.1016/j.neuroimage.2006.10.026.
[78] * J. Kim and B. Horwitz, Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions, Magnetic Resonance Imaging 26(5) (2008), 583-593. doi:10.1016/j.mri.2007.10.011.
[79] * J. Kim and B. Horwitz, How well does structural equation modeling reveal abnormal brain anatomical connections? An fMRI simulation study, NeuroImage 45(4) (2009), 1190-1198. doi:10.1016/j.neuroimage.2009.01.006.
[80] * E. Kim, D.-S. Kim, F. Ahmad and H. Park, Pattern-based Granger causality mapping in FMRI, Brain Connectivity 3(6) (2013), 569-577. doi:10.1089/brain.2013.0148.
[81] * J. Kim, J. R. Wozniak, B. Mueller and W. Pan, Testing group differences in brain functional connectivity: using correlations or partial correlations?, Brain Connectivity 5(4) (2015), 214-231. doi:10.1089/brain.2014.0319.
[82] * J. Kim, J. R. Wozniak, B. A. Mueller, X. Shen and W. Pan, Comparison of statistical tests for group differences in brain functional networks, NeuroImage 101 (2014), 681-694. doi:10.1016/j.neuroimage.2014.07.031.
[83] * S. A. Knock, A. R. McIntosh, O. Sporns, R. Kötter, P. Hagmann and V. K. Jirsa, The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models, J. Neurosci. Methods 183 (2009), 86-94. doi:10.1016/j.jneumeth.2009.07.007.
[84] * M. Lenz, M. Musso, Y. Linke, O. Tüscher, J. Timmer, C. Weiller and B. Schelter, Joint EEG/fMRI state space model for the detection of directed interactions in human brains – a simulation study, Physiological Measurement 32(11) (2011), 1725-1736. doi:10.1088/0967-3334/32/11/S01.
[85] * N. Leonardi, W. R. Shirer, M. D. Greicius and D. Van De Ville, Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time, Human Brain Mapping 35(12) (2014), 5984-5995. doi:10.1002/hbm.22599.
[86] * J. Li, Z. J. Wang and M. J. McKeown, Incorporating error-rate-controlled prior in modelling brain functional connectivity, 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009, pp. 1-4, IEEE Engineering in Medicine and Biology Society, Gordon Life Science Institute. doi:10.1109/ICBBE.2009.5162945.
[87] * X. Li, D. Coyle, L. Maguire, T. M. McGinnity and H. Benali, A model selection method for nonlinear system identification based fMRI effective connectivity analysis, IEEE Trans. Medical Imaging 30(7) (2011), 1365-1380. doi:10.1109/TMI.2011.2116034.
[88] * X. Li, D. Coyle, L. Maguire and T. M. McGinnity, A least trimmed square regression method for second level fMRI effective connectivity analysis, Neuroinformatics 11(1) (2013), 105-118. doi:10.1007/s12021-012-9168-8.
[89] * Z. Li, A. Kadivar, J. Pluta, J. Dunlop and Z. Wang, Test-retest stability analysis of resting brain activity revealed by blood oxygen level-dependent functional MRI, J. Magnetic Resonance Imaging 36(2) (2012), 344-354. doi:10.1002/jmri.23670.
[90] * X. Liang, A. Connelly and F. Calamante, Voxel-wise functional connectomics 60 M. Peró-Cebollero, J. Guàrdia-Olmos and N. Mancho-Fora using arterial spin labeling functional magnetic resonance imaging: the role of denoising, Brain Connectivity 5(9) (2015), 543-553. doi:10.1089/brain.2014.0290.
[91] * W. Liao, D. Marinazzo, Z. Pan, Q. Gong and H. Chen, Kernel granger causality mapping effective connectivity on fMRI data, IEEE Trans. Medical Imaging 28(11) (2009), 1825-1835. doi:10.1109/TMI.2009.2025126.
[92] W. Liao, G. Wu, Q. Xu, G. Ji, Z. Zhang, Y.-F. Zang and G. Lu, Dynamic BC: a MATLAB toolbox for dynamic brain connectome analysis, Brain Connectivity 4(10) (2014), 1-52. doi:10.1089/brain.2014.0253.
[93] R. Limongi and F. J. Pérez, Successful and unsuccessful response inhibitions differentially affect the effective connectivity between insular, presupplementarymotor, and striatal areas, Behavioral Neuroscience 131(1) (2017), 20-32. doi:10.1037/bne0000175.
[94] * Q. H. Lin, J. Liu, Y. R. Zheng, H. Liang and V. D. Calhoun, Semiblind spatial ICA of fMRI using spatial constraints, Human Brain Mapping 31(7) (2010), 1076-1088. doi:10.1002/hbm.20919.
[95] * M. A. Lindquist, Y. Xu, M. B. Nebel and B. S. Caffo, Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach, NeuroImage 101 (2014), 531-546. doi:10.1016/j.neuroimage.2014.06.052.
[96] * A. Liu, X. Chen, M. J. Mckeown and Z. J. Wang, A sticky weighted regression model for time-varying resting-state brain connectivity estimation, IEEE Trans. Biomedical Engineering 62(2) (2015), 501-510.
[97] * A. Liu, X. Chen, Z. J. Wang, Q. Xu, S. Appel-Cresswell and M. J. McKeown, A genetically informed, group fMRI connectivity modeling approach: application to schizophrenia, IEEE Trans. Biomedical Engineering 61(3) (2014), 946-956.
[98] * A. Liu, J. Li, Z. J. Wang and M. J. McKeown, A computationally efficient, exploratory approach to brain connectivity incorporating false discovery rate control, a priori knowledge, and group inference, Computational and Mathematical Methods in Medicine 2012 (2012), Article ID 967380, 14 pp. doi:10.1155/2012/967380. · Zbl 1261.92007
[99] M. Luchtmann, K. Jachau, D. Adolf, S. Baecke, R. Lützkendorf, C. Müller, C. Tempelmann and J. Bernarding, Decreased effective connectivity in the visuomotor system after alcohol consumption, Alcohol 47(3) (2013), 195-202. doi:10.1016/j.alcohol.2013.01.002.
[100] * M. Luessi, S. D. Babacan, R. Molina, J. R. Booth and A. K. Katsaggelos, Simulation in fMRI Connectivity Studies 61
[101] * L. Luo, L. Xu, R. Jung, G. Pearlson, T. Adali and V. D. Calhoun, Constrained source-based morphometry identifies structural networks associated with default mode network, Brain Connectivity 2 (2012), 33-43. doi:10.1089/brain.2011.0026.
[102] * E. Maggioni, M. G. Tana, F. Arrigoni, C. Zucca and A. M. Bianchi, Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition, J. Neurosci. Methods 228 (2014), 86-99. doi:10.1016/j.jneumeth.2014.03.004.
[103] V. Mäki-Marttunen, I. Diez, J. M. Cortes, D. R. Chialvo and M. Villarreal, Disruption of transfer entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness, Frontiers in Neuroinformatics 7 (2013), 24. doi:10.3389/fninf.2013.00024.
[104] D. S. Manoach, G. Schlaug, B. Siewert, D. G. Darby, B. M. Bly, A. Benfield, R. R. Edelman and S. Warach, Prefrontal cortex fMRI signal changes are correlated with working memory load, NeuroReport 8(2) (1997), 545-549.
[105] D. S. Manoach, D. Z. Press, V. Thangaraj, M. M. Searl, D. C. Goff, E. Halpern, C. B. Saper and S. Warach, Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI, Biological Psychiatry 45(9) (1999), 1128-1137.
[106] * G. Marrelec, J. Kim, J. Doyon and B. Horwitz, Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI, Human Brain Mapping 30(3) (2009), 941-950. doi:10.1002/hbm.20555.
[107] S. L. Mason, J. Zhang, F. Begeti, N. Valle Guzman, A. S. Lazar, J. B. Rowe, R. A. Barker and A. Hampshire, The role of the amygdala during emotional processing in Huntington’s disease: from pre-manifest to late stage disease, Neuropsychologia 70 (2015), 80-89. doi:10.1016/j.neuropsychologia.2015.02.017.
[108] * D. G. McLaren, M. L. Ries, G. Xu and S. C. Johnson, A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches, NeuroImage 61(4) (2012), 1277-1286. doi:10.1016/j.neuroimage.2012.03.068.
[109] * C. McNorgan and M. F. Joanisse, A connectionist approach to mapping the human connectome permits simulations of neural activity within an artificial brain, Brain Connectivity 4(1) (2014), 40-52. doi:10.1089/brain.2013.0174.
[110] * A. Messé, D. Rudrauf, H. Benali and G. Marrelec, Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities, PLoS Computational Biology 10(3) (2014), e1003530. doi:10.1371/journal.pcbi.1003530.
[111] X. Miao, X. Wu, R. Li, K. Chen and L. Yao, Altered connectivity pattern of hubs in default-mode network with Alzheimer’s disease: an Granger causality modeling approach, PLoS ONE 6(10) (2011), e25546. doi:10.1371/journal.pone.0025546.
[112] * A. M. Michael, M. Anderson, R. L. Miller, A. Tülay and V. D. Calhoun, Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA, Frontiers in Systems Neuroscience 8(June) (2014), 106. doi:10.3389/fnsys.2014.00106.
[113] D. L. Miller, E. A. Deyoe, J. Neitz, P. A. Bandettim and J. S. Hyde, Mapping of the human visual-cortex utilizing functional magnetic resonance-imaging (fMRI), Investigative Ophthalmology & Visual Science 34(4) (1993), 813.
[114] L. Minati, G. Varotto, L. D’Incerti, F. Panzica and D. Chan, From brain topography to brain topology: relevance of graph theory to functional neuroscience, NeuroReport 24 (2013), 536-543. doi:10.1097/WNR.0b013e3283621234.
[115] * K. Murphy, R. M. Birn, D. Handwerker, T. B. Jones and P. A. Bandettini, The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?, NeuroImage 44(3) (2009), 893-905. doi:10.1016/j.neuroimage.2008.09.036.
[116] * P. Osório, P. Rosa, C. Silvestre and P. Figueiredo, Stochastic dynamic causal modelling of fMRI data with multiple-model Kalman filters, Methods of Information in Medicine 54 (2015), 232-239. doi:10.3414/ME13-02-0052.
[117] * B. Park, D.-S. Kim and H.-J. Park, Graph independent component analysis reveals repertoires of intrinsic network components in the human brain, PLoS ONE 9(1) (2014), e82873. doi:10.1371/journal.pone.0082873.
[118] L. Penke and I. J. Deary, Some guidelines for structural equation modelling in cognitive neuroscience: the case of Charlton et al.’s study on white matter integrity and cognitive ageing, Neurobiology of Aging 31 (2009), 1656-1660. doi:10.1016/j.neurobiolaging.2009.10.019.
[119] * W. D. Penny, Comparing dynamic causal models using AIC, BIC and free energy, NeuroImage 59(1) (2012), 319-330. doi:10.1016/j.neuroimage.2011.07.039.
[120] W. D. Penny, K. E. Stephan, A. Mechelli and K. J. Friston, Modelling functional integration: a comparison of structural equation and dynamic causal models, NeuroImage 23 (2004), S264-S274. doi:10.1016/j.neuroimage.2004.07.041.
[121] * J. Piersa, F. Piekniewski and T. Schreiber, Theoretical model for mesoscopic-level scale-free self-organization of functional brain networks, IEEE Trans. Neural Networks 21(11) (2010), 1747-1758. doi:10.1109/TNN.2010.2066989.
[122] R. A. Poldrack, The future of fMRI in cognitive neuroscience, Neuroimage 62(2) (2012), 1216-1220. doi:10.1016/j.neuroimage.2011.08.007.
[123] R. A. Poldrack, P. C. Fletcher, R. N. Henson, K. J. Worsley, M. Brett and T. E. Nichols, Guidelines for reporting an fMRI study, NeuroImage 40(2) (2008), 409-414. doi:10.1016/j.neuroimage.2007.11.048.
[124] * A. B. Protzner and A. R. McIntosh, Testing effective connectivity changes with structural equation modeling: what does a bad model tell us?, Human Brain Mapping 27(12) (2006), 935-947. doi:10.1002/hbm.20233.
[125] * M. Pyka, D. Heider, S. Hauke, T. Kircher and A. Jansen, Dynamic causal modeling with genetic algorithms, J. Neurosci. Methods 194(2) (2011), 402-406. doi:10.1016/j.jneumeth.2010.11.007.
[126] * J. C. Rajapakse, Y. Wang, X. Zheng and J. Zhou, Probabilistic framework for brain connectivity from functional MR images, IEEE Trans. Medical Imaging 27(6) (2008), 825-833.
[127] * J. D. Ramsey, S. J. Hanson, C. Hanson, Y. O. Halchenko, R. A. Poldrack and C. Glymour, Six problems for causal inference from fMRI, NeuroImage 49(2) (2010), 1545-1558. doi:10.1016/j.neuroimage.2009.08.065.
[128] * J. D. Ramsey, S. J. Hanson and C. Glymour, Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study, NeuroImage 58(3) (2011), 838-848. doi:10.1016/j.neuroimage.2011.06.068.
[129] * Q. Razlighi, J. Steffener, C. Habeck, A. Laine and Y. Stern, Resting state inter and intra hemipheric human brain functional connectivity, 35th Annual International Conference of the IEEE EMBS, 2013, pp. 6522-6525.
[130] * L. Rigoux and J. Daunizeau, Dynamic causal modelling of brain-behaviour relationships, NeuroImage 117 (2015), 202-221. doi:10.1016/j.neuroimage.2015.05.041.
[131] P. Ritter, M. Schirner, A. R. McIntosh and V. K. Jirsa, The virtual brain integrates 64 M. Peró-Cebollero, J. Guàrdia-Olmos and N. Mancho-Fora computational modeling and multimodal neuroimaging, Brain Connectivity 3(2) (2013), 121-145. doi:10.1089/brain.2012.0120.
[132] * J. Rodrigues and A. Andrade, Lag-based effective connectivity applied to fMRI: a simulation study highlighting dependence on experimental parameters and formulation, NeuroImage 89 (2014), 358-377. doi:10.1016/j.neuroimage.2013.10.029.
[133] * J. Rodrigues and A. Andrade, Synthetic neuronal datasets for benchmarking directed functional connectivity metrics, Peer J. 3 (2015), e923. doi:10.7717/peerj.923.
[134] * A. Roebroeck, E. Formisano and R. Goebel, Mapping directed influence over the brain using Granger causality and fMRI, NeuroImage 25 (2005), 230-242. doi:10.1016/j.neuroimage.2004.11.017.
[135] J. B. Rowe, Connectivity analysis is essential to understand neurological disorders, Frontiers in Systems Neuroscience 4 (2010), 144. doi:10.3389/fnsys.2010.00144.
[136] M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, NeuroImage 52 (2010), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003.
[137] * S. Ryali, T. Chen, A. Padmanabhan, W. Cai and V. Menon, Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI, J. Neurosci. Methods 240 (2015), 128-140. doi:10.1016/j.jneumeth.2014.11.014.
[138] * S. Ryali, T. Chen, K. Supekar and V. Menon, Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty, NeuroImage 59(4) (2012), 3852-3861. doi:10.1016/j.neuroimage.2011.11.054.
[139] * S. Ryali, T. Chen, K. Supekar and V. Menon, A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI, NeuroImage 65 (2013), 83-96. doi:10.1016/j.neuroimage.2012.09.067.
[140] * S. Ryali, K. Supekar, T. Chen and V. Menon, Multivariate dynamical systems models for estimating causal interactions in fMRI, NeuroImage 54(2) (2011), 807-823. doi:10.1016/j.neuroimage.2010.09.052.
[141] * Z. S. Saad, S. J. Gotts, K. Murphy, G. Chen, H. J. Jo, A. Martin and R. W. Cox, Trouble at rest: how correlation patterns and group differences become distorted
[142] P. Sanz Leon, S. A. Knock, M. Marmaduke Woodman, L. Domide, J. Mersmann, A. R. McIntosh and V. Jirsa, The Virtual Brain: a simulator of primate brain network dynamics, Frontiers in Neuroinformatics 7 (2013), 10. doi:10.3389/fninf.2013.00010.
[143] * J. R. Sato, A. Fujita, E. F. Cardoso, C. E. Thomaz, M. J. Brammer and E. Amaro, Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis, NeuroImage 52(4) (2010), 1444-1455. doi:10.1016/j.neuroimage.2010.05.022.
[144] * J. R. Sato, P. Morettin, P. R. Arantes and E. Amaro, Wavelet based time-varying vector autoregressive modeling, Computational Statistics & Data Analysis 51(12) (2007), 5847-5866. doi:10.1016/j.csda.2006.10.027. · Zbl 1330.62346
[145] * J. R. Sato, J. Mourão-Miranda, M. da Graça Morais Martin, E. Amaro, Jr., P. A. Morettin and M. J. Brammer, The impact of functional connectivity changes on support vector machines mapping of fMRI data, J. Neurosci. Methods 172(1) (2008), 94-104. doi:10.1016/j.jneumeth.2008.04.008.
[146] * V. D. Schmittmann, S. Jahfari, D. Borsboom, A. O. Savi and L. J. Waldorp, Making large-scale networks from fMRI data, PLoS ONE 10(9) (2015), e0129074. doi:10.1371/journal.pone.0129074.
[147] * M. L. Seghier and K. J. Friston, Network discovery with large DCMs, NeuroImage 68 (2013), 181-191. doi:10.1016/j.neuroimage.2012.12.005.
[148] * M. Senden, R. Goebel and G. Deco, Structural connectivity allows for multithreading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing, NeuroImage 60 (2012), 2274-2284. doi:10.1016/j.neuroimage.2012.02.061.
[149] A. K. Seth, A MATLAB toolbox for Granger causal connectivity analysis, J. Neurosci. Methods 186(2) (2010), 262-273. doi:10.1016/j.jneumeth.2009.11.020.
[150] * A. K. Seth, P. Chorley and L. C. Barnett, Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling, NeuroImage 65 (2013), 540-555. doi:10.1016/j.neuroimage.2012.09.049.
[151] * J. M. Shine, O. Koyejo, P. T. Bell, K. J. Gorgolewski, M. Gilat and R. A. Poldrack, Estimation of dynamic functional connectivity using multiplication of
[152] * S. L. Simpson, M. N. Moussa and P. J. Laurienti, An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks, NeuroImage 60(2) (2012), 1117-1126. doi:10.1016/j.neuroimage.2012.01.071.
[153] * J. F. Smith, K. Chen, A. S. Pillai and B. Horwitz, Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models, Frontiers in Neuroscience 7 (2013), 1-17. doi:10.3389/fnins.2013.00070.
[154] * S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey and M. W. Woolrich, Network modelling methods for FMRI, NeuroImage 54(2) (2011), 875-891. doi:10.1016/j.neuroimage.2010.08.063.
[155] * R. C. Sotero and A. Shmuel, Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state, J. Computational Neuroscience 32(3) (2012), 563-576. doi:10.1007/s10827-011-0370-8. · Zbl 1446.92077
[156] * K. R. Sreenivasan, M. Havlicek and G. Deshpande, Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering, IEEE Trans. Medical Imaging 34(5) (2015), 1155-1163. doi:10.1109/TMI.2014.2379914.
[157] * L. Stanberry, A. Murua and D. Cordes, Functional connectivity mapping using the ferromagnetic potts spin model, Human Brain Mapping 29(4) (2008), 422-440. doi:10.1002/hbm.20397.
[158] * K. E. Stephan, L. Kasper, L. M. Harrison, J. Daunizeau, H. E. M. den Ouden, M. Breakspear and K. J. Friston, Nonlinear dynamic causal models for fMRI, NeuroImage 42(2) (2008), 649-662. doi:10.1016/j.neuroimage.2008.04.262.
[159] * I. H. Stevenson and K. P. Körding, On the similarity of functional connectivity between neurons estimated across timescales, PLoS ONE 5(2) (2010), e9206. doi:10.1371/journal.pone.0009206.
[160] * J. Sui, T. Adali, Q. Yu, J. Chen and V. D. Calhoun, A review of multivariate methods for multimodal fusion of brain imaging data, J. Neurosci. Methods 204(1) (2012), 68-81. doi:10.1016/j.jneumeth.2011.10.031.
[161] C. Y. C. Sylvester, T. D. Wager, S. C. Lacey, L. Hernandez, T. E. Nichols, E. E. Simulation in fMRI Connectivity Studies 67
[162] * Y. Tong, L. M. Hocke, X. Fan, A. C. Janes and B. deB. Frederick, Can apparent resting state connectivity arise from systemic fluctuations?, Frontiers in Human Neuroscience 9 (2015), 285. doi:10.3389/fnhum.2015.00285.
[163] T. Horowitz-Kraus, J. J. Vannest, E. Gozdas and S. K. Holland, Greater utilization of neural-circuits related to executive functions is associated with better reading: a longitudinal fMRI study using the verb generation task, Frontiers in Human Neuroscience 8 (2014), 447. doi:10.3389/fnhum.2014.00447.
[164] * P. A. Valdés-Sosa, J. M. Sánchez-Bornot, A. Lage-Castellanos, M. VegaHernández, J. Bosch-Bayard, L. Melie-García and E. Canales-Rodríguez, Estimating brain functional connectivity with sparse multivariate autoregression, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360(1457) (2005), 969-981. doi:10.1098/rstb.2005.1654.
[165] * G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard and B. Thirion, Detection of brain functional-connectivity difference in post-stroke patients using grouplevel covariance modeling, Medical Image Computing and Computer-Assisted Intervention 13 (2010), 200-208. doi:10.1007/978-3-642-15705-9_25.
[166] * V. Vuksanović and P. Hövel, Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions, NeuroImage 97 (2014), 1-8. doi:10.1016/j.neuroimage.2014.04.03.
[167] * V Vuksanović and P. Hövel, Dynamic changes in network synchrony reveal resting-state functional networks, Chaos 25(2) (2015), 023116. doi:10.1063/1.4913526.
[168] G. D. Waiter, I. J. Deary, R. T. Staff, A. D. Murray, H. C. Fox, J. M. Starr and L. J. Whalley, Exploring possible neural mechanisms of intelligence differences using processing speed and working memory tasks: an fMRI study, Intelligence 37(2) (2009), 199-206.
[169] * H. Wang, C. Chen and H. Fushing, Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders, PloS One 7(10) (2012), e45502. doi:10.1371/journal.pone.0045502.
[170] * Y. M. Wang and J. Xia, Unified framework for robust estimation of brain networks from fMRI using temporal and spatial correlation analyses, IEEE Trans. Medical Imaging 28(8) (2009), 1296-1307. doi:10.1109/TMI.2009.2014863.
[171] * W. D. Weeda, L. J. Waldorp, R. P. P. P. Grasman, S. van Gaal and H. M. Huizenga, Functional connectivity analysis of fMRI data using parameterized regions-of-interest, NeuroImage 54(1) (2011), 410-416. doi:10.1016/j.neuroimage.2010.07.022.
[172] M. Welvaert, J. Durnez, B. Moerkerke, G. Verdoolaege and Y. Rosseel, neuRosim: an R package for generating fMRI data, J. Statistical Software 44(10) (2011), 1-18.
[173] M. Welvaert and Y. Rosseel, A review of fMRI simulation studies, PloS One 9(7) (2014), e101953. doi:10.1371/journal.pone.0101953.
[174] * E. Wong, Direct MR imaging of functional networks, Brain Connectivity 4 (2014), 481-486. doi:10.1089/brain.2014.0294.
[175] M. M. Woodman, L. Pezard, L. Domide, S. A. Knock, P. Sanz-Leon, J. Mersmann, A. R. McIntosh and V. Jirsa, Integrating neuroinformatics tools in The Virtual Brain, Frontiers in Neuroinformatics 8(April) (2014), 36. doi:10.3389/fninf.2014.00036.
[176] * L. Xu, T. Fan, X. Wu, K. Chen, X. Guo, J. Zhang and L. Yao, A poolingLiNGAM algorithm for effective connectivity analysis of fMRI data, Frontiers in Computational Neuroscience 8(October) (2014), 125. doi:10.3389/fncom.2014.00125.
[177] * L. Yang, Z. Liu and B. He, EEG-fMRI reciprocal functional neuroimaging, Clinical Neurophysiology 121(8) (2010), 1240-1250. doi:10.1016/j.clinph.2010.02.153.
[178] * X. Yang, H. Kang, A. T. Newton and B. A. Landman, Evaluation of statistical inference on empirical resting state fMRI, IEEE Trans. Biomedical Engineering 61(4) (2014), 1091-1099. doi:10.1109/TBME.2013.2294013.
[179] * G. Yourganov, T. Schmah, N. W. Churchill, M. G. Berman, C. L. Grady and S. C. Strother, Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks, NeuroImage 96 (2014), 117-132. doi:10.1016/j.neuroimage.2014.03.074.
[180] * S. B. Zaghlool and C. L. Wyatt, Missing data estimation in fMRI dynamic causal modeling, Frontiers in Neuroscience 8(8 July) (2014), 1-12. doi:10.3389/fnins.2014.00191.
[181] * H. Zhang, X. Zhang, Y. Sun, J. Liu, W. Li and J. Tian, A weighted-RV method to detect fine-scale functional connectivity during resting state, NeuroImage 54(4) (2011), 2885-2898. doi:10.1016/j.neuroimage.2010.10.051.
[182] * X. Zheng and J. C. Rajapakse, Learning functional structure from fMR images, NeuroImage 31(4) (2006), 1601-1613. doi:10.1016/j.neuroimage.2006.01.031.
[183] * Y. Zhong, H. Wang, G. Lu, Z. Zhang, Q. Jiao and Y. Liu, Detecting functional connectivity in fmri using pca and regression analysis, Brain Topography 22(2) (2009), 134-144. doi:10.1007/s10548-009-0095-4.
[184] * D. Zhou, W. K. Thompson and G. Siegle, MATLAB toolbox for functional connectivity, NeuroImage 47(4) (2009), 1590-1607. doi:10.1016/j.neuroimage.2009.05.089.
[185] * Z. Zhou, M. Ding, Y. Chen, P. Wright, Z. Lu and Y. Liu, Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality, Brain Research 1289 (2009), 22-29. doi:10.1016/j.brainres.2009.06.096.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.