×

Scalable implicit solvers with dynamic mesh adaptation for a relativistic drift-kinetic Fokker-Planck-Boltzmann model. (English) Zbl 07863592

Summary: In this work we consider a relativistic drift-kinetic model for runaway electrons along with a Fokker-Planck operator for small-angle Coulomb collisions, a radiation damping operator, and a secondary knock-on (Boltzmann) collision source. We develop a new scalable fully implicit solver utilizing finite volume and conservative finite difference schemes and dynamic mesh adaptivity. A new data management framework in the PETSc library based on the p4est library is developed to enable simulations with dynamic adaptive mesh refinement (AMR), distributed memory parallelization, and dynamic load balancing of computational work. This framework and the runaway electron solver building on the framework are able to dynamically capture both bulk Maxwellian at the low-energy region and a runaway tail at the high-energy region. To effectively capture features via the AMR algorithm, a new AMR indicator prediction strategy is proposed that is performed alongside the implicit time evolution of the solution. This strategy is complemented by the introduction of computationally cheap feature-based AMR indicators that are analyzed theoretically. Numerical results quantify the advantages of the prediction strategy in better capturing features compared with nonpredictive strategies; and we demonstrate trade-offs regarding computational costs. The robustness with respect to model parameters, algorithmic scalability, and parallel scalability are demonstrated through several benchmark problems including manufactured solutions and solutions of different physics models. We focus on demonstrating the advantages of using implicit time stepping and AMR for runaway electron simulations.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Fxx Numerical linear algebra
65Yxx Computer aspects of numerical algorithms

Software:

NORSE; hypre; BoomerAMG; p4est

References:

[1] Boozer, A. H., Theory of runaway electrons in ITER: equations, important parameters, and implications for mitigation, Phys. Plasmas, 22, 3, Article 032504 pp., 2015
[2] Breizman, B. N.; Aleynikov, P.; Hollmann, E. M.; Lehnen, M., Physics of runaway electrons in tokamaks, Nucl. Fusion, 59, 8, Article 083001 pp., 2019
[3] Guo, Z.; McDevitt, C. J.; Tang, X.-Z., Phase-space dynamics of runaway electrons in magnetic fields, Plasma Phys. Control. Fusion, 59, 4, Article 044003 pp., 2017
[4] Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T., NORSE: a solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma, Comput. Phys. Commun., 212, 269-279, 2017 · Zbl 1380.65183
[5] Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T., Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation, Plasma Phys. Control. Fusion, 60, 7, Article 074010 pp., 2018
[6] Daniel, D.; Taitano, W. T.; Chacón, L., A fully implicit, scalable, conservative nonlinear relativistic Fokker-Planck 0D-2P solver for runaway electrons, Comput. Phys. Commun., 254, Article 107361 pp., 2020 · Zbl 1537.82029
[7] Strauss, H.; Longcope, D., An adaptive finite element method for magnetohydrodynamics, J. Comput. Phys., 147, 2, 318-336, 1998 · Zbl 0936.76032
[8] Philip, B.; Chacón, L.; Pernice, M., Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics, J. Comput. Phys., 227, 20, 8855-8874, 2008 · Zbl 1391.76564
[9] Baty, H., FINMHD: an adaptive finite-element code for magnetic reconnection and formation of plasmoid chains in magnetohydrodynamics, Astrophys. J. Suppl. Ser., 243, 2, 23, 2019
[10] Peng, Z.; Tang, Q.; Tang, X.-Z., An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation, SIAM J. Sci. Comput., 42, 5, B1227-B1249, 2020 · Zbl 1451.65202
[11] Tang, Q.; Chacón, L.; Kolev, T. V.; Shadid, J. N.; Tang, X.-Z., An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD, J. Comput. Phys., 454, Article 110967 pp., 2022 · Zbl 07518056
[12] Hittinger, J. A.; Banks, J. W., Block-structured adaptive mesh refinement algorithms for Vlasov simulation, J. Comput. Phys., 241, 118-140, 2013 · Zbl 1349.76339
[13] Adams, M. F.; Hirvijoki, E.; Knepley, M. G.; Brown, J.; Isaac, T.; Mills, R., Landau collision integral solver with adaptive mesh refinement on emerging architectures, SIAM J. Sci. Comput., 39, 6, C452-C465, 2017 · Zbl 1375.82105
[14] Wettervik, B. S.; DuBois, T. C.; Siminos, E.; Fülöp, T., Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement, Eur. Phys. J. D, 71, 6, 1-14, 2017
[15] Arslanbekov, R. R.; Kolobov, V. I.; Frolova, A. A., Kinetic solvers with adaptive mesh in phase space, Phys. Rev. E, 88, 6, Article 063301 pp., 2013
[16] Kolobov, V.; Arslanbekov, R.; Levko, D., Boltzmann-Fokker-Planck Kinetic Solver with Adaptive Mesh in Phase Space, AIP Conference Proceedings, vol. 2132, 2019, AIP Publishing
[17] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 1, 64-84, 1989 · Zbl 0665.76070
[18] Constantinescu, E.; Sandu, A.; Carmichael, G., Modeling atmospheric chemistry and transport with dynamic adaptive resolution, Comput. Geosci., 12, 2, 133-151, 2008 · Zbl 1159.86302
[19] Offermans, N.; Massaro, D.; Peplinski, A.; Schlatter, P., Error-driven adaptive mesh refinement for unsteady turbulent flows in spectral-element simulations, Comput. Fluids, Article 105736 pp., 2022
[20] Guo, W.; Cheng, Y., An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions, SIAM J. Sci. Comput., 39, 6, A2962-A2992, 2017 · Zbl 1379.65077
[21] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133, 2011 · Zbl 1230.65106
[22] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, 2002, Cambridge University Press · Zbl 1010.65040
[23] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, 2009, Springer: Springer Berlin, Heidelberg · Zbl 1227.76006
[24] Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, 1, 59-98, 1979 · Zbl 0423.76070
[25] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.; Dalcin, L.; Dener, A.; Eijkhout, V.; Faibussowitsch, J.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J., PETSc/TAO users manual, 2022, Argonne National Laboratory, Tech. Rep. ANL-21/39 - Revision 3.18
[26] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM J. Numer. Anal., 14, 6, 1006-1021, 1977 · Zbl 0374.65038
[27] Giraldo, F. X.; Kelly, J. F.; Constantinescu, E. M., Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (numa), SIAM J. Sci. Comput., 35, 5, B1162-B1194, 2013 · Zbl 1280.86008
[28] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397, 2004 · Zbl 1036.65045
[29] hypre: high performance preconditioners · Zbl 1056.65046
[30] Falgout, R. D.; Yang, U. M., hypre: a library of high performance preconditioners, (Sloot, P. M.A.; Hoekstra, A. G.; Tan, C. J.K.; Dongarra, J. J., Computational Science — ICCS 2002, 2002, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 632-641 · Zbl 1056.65046
[31] Brizard, A. J.; Chan, A. A., Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations, Phys. Plasmas, 6, 12, 4548-4558, 1999
[32] Connor, J.; Hastie, R., Relativistic limitations on runaway electrons, Nucl. Fusion, 15, 3, 415, 1975
[33] Guo, Z.; Mcdevitt, C.; Tang, X., Toroidal effect on runaway vortex and avalanche growth rate, Phys. Plasmas, 26, 8, Article 082503 pp., 2019
[34] Papp, G.; Drevlak, M.; Fülöp, T.; Helander, P., Runaway electron drift orbits in magnetostatic perturbed fields, Nucl. Fusion, 51, 4, Article 043004 pp., 2011
[35] Hesslow, L.; Embréus, O.; Stahl, A.; DuBois, T. C.; Papp, G.; Newton, S. L.; Fülöp, T., Effect of partially screened nuclei on fast-electron dynamics, Phys. Rev. Lett., 118, 25, Article 255001 pp., 2017
[36] Rosenbluth, M.; Putvinski, S., Theory for avalanche of runaway electrons in tokamaks, Nucl. Fusion, 37, 10, 1355, 1997
[37] Chiu, S.; Rosenbluth, M.; Harvey, R.; Chan, V., Fokker-Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks, Nucl. Fusion, 38, 11, 1711, 1998
[38] McDevitt, C. J.; Guo, Z.; Tang, X.-Z., Avalanche mechanism for runaway electron amplification in a tokamak plasma, Plasma Phys. Control. Fusion, 61, 5, Article 054008 pp., 2019
[39] Isaac, T.; Burstedde, C.; Wilcox, L. C.; Ghattas, O., Recursive algorithms for distributed forests of octrees, SIAM J. Sci. Comput., 37, 5, C497-C531, 2015 · Zbl 1323.65105
[40] Sundar, H.; Sampath, R. S.; Biros, G., Bottom-up construction and 2:1 balance refinement of linear octrees in parallel, SIAM J. Sci. Comput., 30, 5, 2675-2708, 2008 · Zbl 1186.68554
[41] Burstedde, C.; Ghattas, O.; Gurnis, M.; Isaac, T.; Stadler, G.; Warburton, T.; Wilcox, L. C., Extreme-scale AMR, (SC10: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2010, ACM/IEEE)
[42] Sundar, H.; Biros, G.; Burstedde, C.; Rudi, J.; Ghattas, O.; Stadler, G., Parallel geometric-algebraic multigrid on unstructured forests of octrees, (SC12: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2012, ACM/IEEE)
[43] Rudi, J.; Malossi, A. C.I.; Isaac, T.; Stadler, G.; Gurnis, M.; Staar, P. W.; Ineichen, Y.; Bekas, C.; Curioni, A.; Ghattas, O., An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in Earth’s mantle, (SC15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2015, ACM), 1-12
[44] Rudi, J.; Stadler, G.; Ghattas, O., Weighted BFBT preconditioner for Stokes flow problems with highly heterogeneous viscosity, SIAM J. Sci. Comput., 39, 5, S272-S297, 2017 · Zbl 1392.65039
[45] Rudi, J.; Shih, Y.-H.; Stadler, G., Advanced Newton methods for geodynamical models of Stokes flow with viscoplastic rheologies, Geochem. Geophys. Geosyst., 21, 9, 2020
[46] Weinzierl, T., The Peano software—parallel, automaton-based, dynamically adaptive grid traversals, ACM Trans. Math. Softw., 45, 2, 1-41, 2019 · Zbl 1471.65213
[47] Fernando, M.; Neilsen, D.; Lim, H.; Hirschmann, E.; Sundar, H., Massively parallel simulations of binary black hole intermediate-mass-ratio inspirals, SIAM J. Sci. Comput., 41, 2, C97-C138, 2019 · Zbl 1416.83050
[48] Henson, V. E.; Yang, U. M., BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 1, 155-177, 2002 · Zbl 0995.65128
[49] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Q., A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: model problem analysis, J. Comput. Phys., 343, 432-468, 2017 · Zbl 1380.76094
[50] Manteuffel, T. A.; Ruge, J.; Southworth, B. S., Nonsymmetric algebraic multigrid based on local approximate ideal restriction (ℓAIR), SIAM J. Sci. Comput., 40, 6, A4105-A4130, 2018 · Zbl 1412.65130
[51] McDevitt, C. J.; Guo, Z.; Tang, X.-Z., Relation of the runaway avalanche threshold to momentum space topology, Plasma Phys. Control. Fusion, 60, 2, Article 024004 pp., 2018
[52] Burgers, J., A Mathematical Model Illustrating the Theory of Turbulence, Advances in Applied Mechanics, vol. 1, 171-199, 1948, Elsevier
[53] Mohseni, K.; Colonius, T., Numerical treatment of polar coordinate singularities, J. Comput. Phys., 157, 2, 787-795, 2000 · Zbl 0981.76075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.