×

A stability analysis of a Eulerian solution method for moving boundary problems in electrochemical machining. (English) Zbl 0713.65087

A front-tracking method, which is based on a system of N nonlinear, autonomous, ordinary differential equations for describing the movement of N marker points on the moving boundary is described. Local stability of equilibrium solutions and global stability of nonequilibrium solutions are analysed. The general considerations are supplemented by several computations of some examples.
Reviewer: E.Krause

MSC:

65Z05 Applications to the sciences
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
80A30 Chemical kinetics in thermodynamics and heat transfer
80A22 Stefan problems, phase changes, etc.
35R35 Free boundary problems for PDEs

Software:

NAG; HSL; REDUCE
Full Text: DOI

References:

[1] Alkire, R.; Bergh, T.; Sani, R. L., Predicting electrode shape change with use of finite element methods, J. Electrochemical Soc., 125, 1981-1988 (1978)
[2] Berezin, I. S.; Zhidkov, N. P., Computing Methods, II (1965), Pergamon Press: Pergamon Press Reading, MA · Zbl 0122.12903
[3] (Bossavit, A.; Damlamian, A.; Fremond, M., Free Boundary Problems: Applications and Theory, Vol. III,. Free Boundary Problems: Applications and Theory, Vol. III,, Res. Notes Math., 120 (1985), Pitman: Pitman Oxford) · Zbl 0578.35003
[4] Braun, M., Differential Equations and Their Applications, (Appl. Math. Sci., 15 (1978), Springer: Springer London) · Zbl 0315.34001
[5] Chan, T. F.; Foulser, D. E., Effectively well-conditioned linear systems, SIAM J. Sci. Statist. Comput., 9, 963-969 (1988) · Zbl 0664.65041
[6] Christiansen, S., On Kupradze’s functional equation for plane harmonic problems, (R. P., Gilbert; R. J., Weinacht, Function Theoretic Methods in Differential Equations. Function Theoretic Methods in Differential Equations, Res. Notes Math., 8 (1976), Pitman: Pitman New York), 205-243 · Zbl 0339.31002
[7] Christiansen, S., On two methods for elimination of non-unique solutions of an integral equation with logarithmic kernel, Appl Anal., 13, 1-18 (1982) · Zbl 0446.65061
[8] Christiansen, S., Development of saw-tooth instabilities on a moving boundary, Z. Angew. Math. Mech., 65, T373-T375 (1985) · Zbl 0575.65124
[9] Christiansen, S., A stability analysis of a Eulerian method for some surface gravity wave problems, (Ballmann, J.; Jeltsch, R., Nonlinear Hyperbolic Equations—Theory, Computation Methods, and Applications. Nonlinear Hyperbolic Equations—Theory, Computation Methods, and Applications, Notes Numer. Fluid Mech., 24 (1989), Vieweg: Vieweg London), 75-84 · Zbl 0662.76056
[10] S. Christiansen, A brief mathematical analysis of electrochemical machining problems in: Proc. Fourth ECMI-Meeting on Industrial Mathematics; S. Christiansen, A brief mathematical analysis of electrochemical machining problems in: Proc. Fourth ECMI-Meeting on Industrial Mathematics
[11] Christiansen, S., Application of integral equations to an electrochemical machining problem, (Lecture (1980-12-09), Math Forschungsinstitut: Math Forschungsinstitut Braunschweig)
[12] S. Christiansen, Analysis of saw-tooth instabilities on a moving boundary, Lecture 1985-07-29, Dept. Appl. Math., Univ. Western Ontario, London, Ont., Canada (unpublished).; S. Christiansen, Analysis of saw-tooth instabilities on a moving boundary, Lecture 1985-07-29, Dept. Appl. Math., Univ. Western Ontario, London, Ont., Canada (unpublished). · Zbl 0575.65124
[13] S. Christiansen, A stability analysis of a Eulerian solution method for moving boundary problems in porous flow, in preparation.; S. Christiansen, A stability analysis of a Eulerian solution method for moving boundary problems in porous flow, in preparation. · Zbl 0713.65087
[14] S. Christiansen and P.C. Hansen, in preparation.; S. Christiansen and P.C. Hansen, in preparation.
[15] Christiansen, S.; Rasmussen, H., Numerical solutions for two-dimensional annular electrochemical machining problems, J. Inst. Math. Appl., 18, 295-307 (1976)
[16] Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations (1965), Heath: Heath Oberwolfach, FRG · Zbl 0154.09301
[17] Crank, J., Free and Moving Boundary Problems (1984), Clarendon Press: Clarendon Press Boston · Zbl 0547.35001
[18] Cronin, J., Differential Equations, Introduction and Qualitative Theory (1980), Marcel Dekker: Marcel Dekker Oxford · Zbl 0429.34002
[19] Crowley, A. B., On the weak solution of moving boundary problems, J. Inst. Math. Appl., 24, 43-57 (1979) · Zbl 0416.65073
[20] Cryer, C. W., Numerical methods for free and moving boundary problems, (Iserles, A.; Powell, M. J.D., The State of the Art in Numerical Analysis (1987), Clarendon Press: Clarendon Press New York), 601-622 · Zbl 0615.65125
[21] Curtiss, J. H., Interpolation with harmonic and complex polynomials to boundary values, J. Math. Mech., 9, 167-192 (1960) · Zbl 0092.29301
[22] Davis, P. J., Circulant Matrices (1979), Wiley: Wiley Oxford · Zbl 0418.15017
[23] Davis, P. J.; Rabinowitz, P., Advances in orthonormalizing computation, Adv. Comput., 2, 55-133 (1961) · Zbl 0136.13405
[24] Deconinck, J.; Magetto, G.; Vereecken, J., Calculation of current distribution and electrode shape change by the boundary element method, J. Electrochemical Soc., 132, 2960-2965 (1985)
[25] Dekker, K.; Verwer, J. G., Stability of Runge—Kutta Methods for Stiff Nonlinear Differential Equations, (CWI Monographs, 2 (1984), North-Holland: North-Holland New York) · Zbl 0571.65057
[26] Elliott, C. M., On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Math. Appl., 25, 121-131 (1980) · Zbl 0428.49003
[27] Elliott, C. M., A variational inequality formulation of a steady state electrochemical machining free boundary, (Fasano, A.; Primicerio, M., Free Boundary Problems: Theory and Applications, Vol II. Free Boundary Problems: Theory and Applications, Vol II, Res. Notes Math., 79 (1983), Pitman: Pitman Amsterdam), 505-512
[28] (Fasano, A.; Primicerio, M., Free Boundary Problems: Theory and Applications, Vol II. Free Boundary Problems: Theory and Applications, Vol II, Res. Notes Math., 79 (1983), Pitman: Pitman London) · Zbl 0511.35088
[29] Fenton, J. D.; Rienecker, M. M., A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions, J. Fluid Mech., 118, 411-443 (1982) · Zbl 0512.76024
[30] Fletcher, T. J., Linear Algebra through its Applications (1972), Van Nostrand Reinhold: Van Nostrand Reinhold London · Zbl 0251.15001
[31] Forsyth, P.; Rasmussen, H., Solution of time dependent electrochemical machining problems by a co-ordinate transformation, J. Inst. Math. Appl., 24, 411-424 (1979) · Zbl 0418.65065
[32] Forsyth, P.; Rasmussen, H., High order perturbation solution of the electrochemical smoothing problem, J. Comput. Appl. Math., 6, 1, 37-42 (1980) · Zbl 0426.65070
[33] Forsyth, P.; Rasmussen, H., Comparison of variational inequality and front-tracking solution of an electrochemical problem, Utilitas Math., 17, 3-15 (1980) · Zbl 0441.65095
[34] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications, (CBMS-NSF Regional Conf. Ser. in Appl. Math., 26 (1977), SIAM: SIAM London) · Zbl 0561.76076
[35] Hansen, E., Numerical solution of mechanical problems via integral equations, (Proc. Second National Congress on Theoretical and Applied Mechanics[cl]Varna, Bulgaria, 1973 (1976), Publishing House of the Bulgarian Academy of Sciences: Publishing House of the Bulgarian Academy of Sciences Philadelphia, PA), 94-106
[36] Hansen, E. B., An integral equation method for the mixed boundary value problem for Laplace’s equation, (Proc. Conf. Oberwolfach. Proc. Conf. Oberwolfach, BRD, 1983. Proc. Conf. Oberwolfach. Proc. Conf. Oberwolfach, BRD, 1983, Methoden Verfahren Math. Phys., 21 (1981), Lang: Lang Sofia), 113-123 · Zbl 0515.35017
[37] Hansen, E. B., A comparison between theory and experiment in electrochemical machining, (Fasano, A.; Primicerio, M., Free Boundary Problems: Theory and Applications, Vol II. Free Boundary Problems: Theory and Applications, Vol II, Res. Notes Math., 79 (1983), Pitman: Pitman Frankfurt am Main), 516-525 · Zbl 0543.76175
[38] Hansen, E. B.; Holm, A. M., Formulation of two-dimensional annular electrochemical machining problems by integral equations of the second kind, Z. Angew. Math. Mech., 60, T249-T251 (1980) · Zbl 0462.65070
[39] Hansen, E. B.; McGeough, J. A., On electropainting, SIAM J. Appl. Math., 43, 627-638 (1983) · Zbl 0522.45007
[40] Hansen, E. B.; Rasmussen, H., The transient development of an electrochemical machining process, Z. Angew. Math. Mech., 60, T251-T252 (1980) · Zbl 0464.35099
[41] Harwell Subroutine Library, (Comput. Sci. Systems Div. (1985), Harwell Laboratory: Harwell Laboratory London), Section D,(Differential Equations)
[42] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y.-H., Theory and Applications of Hopf Bifurcation, (London Math. Soc. Lecture Note Ser., 41 (1981), Cambridge Univ. Press: Cambridge Univ. Press Oxfordshire, England) · Zbl 0474.34002
[43] (A. C., Hearn, REDUCE, User’s Manual, The Rand Corporation. REDUCE, User’s Manual, The Rand Corporation, Santa Monica, CA (1984))
[44] Hildebrand, F. B., Introduction to Numerical Analysis (1956), McGraw-Hill: McGraw-Hill Cambridge · Zbl 0070.12401
[45] Hougård, P., Some solutions of a free boundary problem related to electrochemical machining,, (DCAMM Report No. S9, Danish Center Appl. Math. Mech. (1977), Technical Univ.: Technical Univ. New York)
[46] Hume, E. C.; Brown, R. A.; Deen, W. M., Comparison of boundary and finite element methods’ for moving-boundary problems governed by a potential, Internat. J. Numer. Methods Engrg., 21, 1295-1314 (1985) · Zbl 0594.65083
[47] Hume, E. C.; Deen, W. M.; Brown, R. A., Mass transfer analysis of electrodeposition through polymeric masks, J. Electrochemical Soc., 131, 1251-1258 (1984)
[48] Hyman, J. M., Numerical methods for tracking interfaces, Phys. D, 12, 396-407 (1984) · Zbl 0604.65092
[49] IMSL MATH/LIBRARY, (CSPER/DCSPER (Compute the cubic spline interpolant with periodic boundary conditions) (1987)), 427ff, Version 1.0
[50] IMSL MATH/LIBRARY, (CSVAL/DCSVAL (Evaluate a cubic spline) (1987)), 430ff, Version 1.0
[51] IMSL MATH/LIBRARY, (EVLRG/DEVLRG (Compute all of the eigenvalues of a real matrix) (1987)), 293ff, Version 1.0
[52] IMSL MATH/LIBRARY, (IVPAG/DIVPAG (Solve an initial-value problem for ordinary differential equation using an Adams-Moulton or Gear method) (1987)), 640ff, Version 1.0
[53] IMSL MATH/LIBRARY, (IVPBS/DIVPBS (Solve an initial-value problem for ordinary differential equations using the Bulirsh-Stoer extrapolation method) (1987)), 653ff, Version 1.0
[54] IMSL MATH/LIBRARY, (IVPRK/DIVPRK (Solve an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method) (1987)), 633ff, Version 1.0
[55] IMSL MATH/LIBRARY, (LSARG/DLSARG (Solve a real general system of linear equations with iterative refinement) (1987)), 11ff, Version 1.0
[56] IMSL MATH/LIBRARY, (LSBRR/DLSBRR (Solve a linear least squares problem with iterative refinement) (1987)), 248ff, Version 1.0
[57] IMSL MATH/LIBRARY, (QDAG/DQDAG (Integrate a function using a globally adaptive scheme based on Gauss-Kronrod rules) (1987)), 569ff, Version 1.0
[58] (Iserles, A.; Powell, M. J.D., The State of the Art in Numerical Analysis (1987), Clarendon Press: Clarendon Press Denmark) · Zbl 0611.00024
[59] Kantorovich, L. V.; Krylov, V. I., Approximate Methods of Higher Analysis (1964), Noordhoff: Noordhoff Oxford · Zbl 0040.21503
[60] Kleev, A. I.; Manenkov, A. B., The convergence of point-matching techniques, IEEE Trans. Antennas and Propagation, 37, 50-54 (1989)
[61] Kolodziej, J. A., Review of application of boundary collocation methods in mechanics of continuous media, Solid Mech. Arch., 12, 187-231 (1987) · Zbl 0625.73096
[62] Kudrewicz, J., Approximationstheorie, (Dreszer, J., Mathematik Handbuch für Technik and Naturwissenschaft (1975), Harri Deutsch: Harri Deutsch Groningen), 1028-1056 · Zbl 0314.00001
[63] Kupradze, V. D., On the approximate solution of problems in mathematical physics, Russian Math. Surveys, 22, 2, 58-108 (1967) · Zbl 0155.43204
[64] Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problems, U.S.S.R Comput. Math. and Math. Phys., 4, 4, 82-126 (1964) · Zbl 0154.17604
[65] Lambert, J. D., Computational Methods in Ordinary Differential Equations (1973), Wiley: Wiley Zürich · Zbl 0258.65069
[66] Lambert, J. D., Developments in stability theory for ordinary differential equations, (The State of the Art in Numerical Analysis (1987), Clarendon Press: Clarendon Press Chichester), 409-431 · Zbl 0615.65093
[67] McGeough, J. A., Principles of Electrochemical Machining (1974), Chapman and Hall: Chapman and Hall Oxford · Zbl 0501.35077
[68] McGeough, J. A., Free and moving boundary problems in electrochemical machining and flame fronts, (Free Boundary Problems: Theory and Applications, Vol II (1985), Pitman: Pitman London), 472-482 · Zbl 0501.35077
[69] McGeough, J. A., Unsolved moving boundary problems in electro-chemical machining, (Free Boundary Problems: Theory and Applications, Vol III (1985), Pitman: Pitman London), 152-156 · Zbl 0593.35103
[70] McGeough, J. A.; Rasmussen, H., On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Math. Appl., 13, 13-21 (1974)
[71] McGeough, J. A.; Rasmussen, H., Theoretical analysis of the electroforming process, J. Mech. Engrg. Sci., 23, 113-120 (1981)
[72] D. Meredith and H. Rasmussen, Boundary approximation methods for potential problems associated with moving boundary problems, J. Comput. Appl Math.; D. Meredith and H. Rasmussen, Boundary approximation methods for potential problems associated with moving boundary problems, J. Comput. Appl Math. · Zbl 0748.65085
[73] Millar, R. F., The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers, Radio Science, 8, 785-796 (1973)
[74] Library Manual, Mark 13 (1988), Section D02 (Ordinary differential equations)
[75] Library Manual, Mark 13 (1988), Section D02EBF (Integration of a stiff system of first-order ordinary differential equations)
[76] Library Manual, Mark 13 (1988), Section F02WEF (Singular value decomposition of a general matrix)
[77] Library Manual, Mark 13 (1988), Section F04ASF (Accurate solution of a set of real symmetric positive definite linear equations by Cholesky’s decomposition method)
[78] O’Brien, S. B.G. M.; Dijksman, J. F., A moving boundary problem in porous flow, Math. Engrg. Industry, 2, 91-112 (1989) · Zbl 0838.76089
[79] Poritsky, H.; Danforth, C. E., On the torsion problem, (Proc. 3rd U.S. National Congress on Applied Mechanics (1958)), 431-441
[80] Prentice, G. A.; Tobias, C. W., A survey of numerical methods and solutions for current distribution problems, J. Electrochemical Soc., 129, 72-78 (1982)
[81] Prentice, G. A.; Tobias, C. W., Simulation of changing electrode profiles, J. Electrochemical Soc., 129, 78-85 (1982)
[82] Rasmussen, H.; Christiansen, S., A perturbation solution for a two-dimensional annular electrochemical machining problem, J. Inst. Math. Appl., 18, 149-153 (1976)
[83] Rasmussen, H.; McGeough, J. A., On the non-linear stability of the electroforming process, IMA J. Appl. Math., 27, 211-220 (1981)
[84] Read, F. H., A collocation method for solving Laplace’s equation, J. Comput. Phys., 6, 527-532 (1970) · Zbl 0203.48402
[85] Reichel, L., On the determination of boundary collocation points for solving some problems for the Laplace operator, J. Comput. Appl. Math., 11, 2, 175-196 (1984) · Zbl 0569.65083
[86] Rienecker, M. M.; Fenton, J. D., A Fourier approximation method for steady water waves, J. Fluid Mech., 104, 119-137 (1981) · Zbl 0494.76019
[87] Runge, C., Über empirische Funktionen and die Interpolation zwischen äquidistanten Ordinaten, Z. Math. Phys., 46, 224-243 (1901) · JFM 32.0272.02
[88] Sand, J.; Østerby, O., Regions of absolute stability, DAIMI PB-102 (1979), Comput. Sci. Dept., Aarhus Univ.: Comput. Sci. Dept., Aarhus Univ. London
[89] Sautebin, R.; Froidevaux, H.; Landholt, D., Theoretical and experimental modeling of surface leveling in ECM under primary current distribution conditions, J. Electrochemical Soc., 127, 1096-1100 (1980)
[90] Sautebin, R.; Landholt, D., Anodic leveling under secondary and tertiary current distribution conditions, J. Electrochemical Soc., 129, 946-953 (1982)
[91] Thomsen, P. G.; Zlatev, Z., Two-parameter families of predictor-corrector methods for the solution of ordinary differential equations, BIT, 19, 503-517 (1979) · Zbl 0428.65047
[92] Wu, Y.-C.; Yu, D.-J., Trefftz method for hydrodynamic pressure on rigid dams with non-vertical upstream face, Internat. J. Numer. Meth. Fluids, 9, 1-7 (1989) · Zbl 0658.76103
[93] Young, D. M.; Gregory, R. T., A Survey of Numerical Mathematics, Vols. I + II (1973), Addison-Wesley: Addison-Wesley Denmark · Zbl 0262.65002
[94] Zielinski, A. P.; Herrera, I., Trefftz method: Fitting boundary conditions, Internat. J. Numer. Meth. Engrg., 24, 871-891 (1987) · Zbl 0622.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.