×

Fluttering-induced flow in a closed chamber. (English) Zbl 1543.76049

Summary: We study the emergence of fluid flow in a closed chamber that is driven by dynamical deformations of an elastic sheet. The sheet is compressed between the sidewalls of the chamber and partitions it into two separate parts, each of which is initially filled with an inviscid fluid. When fluid exchange is allowed between the two compartments of the chamber, the sheet becomes unstable, and its motion displaces the fluid from rest. We derive an analytical model that accounts for the coupled, two-way, fluid-sheet interaction. We show that the system depends on four dimensionless parameters: the normalized excess length of the sheet compared with the lateral dimension of the chamber, \(\varDelta\); the normalized vertical dimension of the chamber; the normalized initial volume difference between the two parts of the chamber, \(v_{du}(0)\); and the structure-to-fluid mass ratio, \(\lambda\). We investigate the dynamics at the early times of the system’s evolution and then at moderate times. We obtain the growth rates and the frequency of vibrations around the second and the first buckling modes, respectively. Analytical solutions are derived for these linear stability characteristics within the limit of the small-amplitude approximation. At moderate times, we investigate how the sheet escapes from the second mode. Given the chamber’s dimensions, we show that the initial energy of the sheet is mostly converted into hydrodynamic energy of the fluid if \(\lambda \ll 1\) and into kinetic energy of the sheet if \(\lambda \gg 1\). In both cases, most of the initial potential energy is released at time \(t_p\simeq \ln[c\varDelta^{1/2}/v_{du}(0)]/\sigma\), where \(\sigma\) is the growth rate and \(c\) is a constant.

MSC:

76E99 Hydrodynamic stability
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H55 Stability of dynamical problems in solid mechanics

References:

[1] Alben, S.2008Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech.614, 355-380. · Zbl 1162.76014
[2] Alben, S. & Shelley, M.J.2008Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett.100, 074301.
[3] Argentina, M. & Mahadevan, L.2005Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA102 (6), 1829-1834.
[4] Box, F., O’Kiely, D., Kodio, O., Inizan, M., Castrejón-Pita, A.A. & Vella, D.2019Dynamics of wrinkling in ultrathin elastic sheets. Proc. Natl Acad. Sci. USA116 (42), 20875-20880. · Zbl 1431.74081
[5] Boyko, E., Eshel, R., Gommed, K., Gat, A.D. & Bercovici, M.2019Elastohydrodynamics of a pre-stretched finite elastic sheet lubricated by a thin viscous film with application to microfluidic soft actuators. J. Fluid Mech.862, 732-752. · Zbl 1415.76200
[6] Butikov, E.I.1999The rigid pendulum – an antique but evergreen physical model. Eur. J. Phys.20 (6), 429-441.
[7] Chopin, J., Dasgupta, M. & Kudrolli, A.2017Dynamic wrinkling and strengthening of an elastic filament in a viscous fluid. Phys. Rev. Lett.119, 088001.
[8] Christov, I.C., Cognet, V., Shidhore, T.C. & Stone, H.A.2018Flow rate-pressure drop relation for deformable shallow microfluidic channels. J. Fluid Mech.841, 267-286. · Zbl 1419.76308
[9] Coene, R.1992Flutter of slender bodies under axial stress. Appl. Sci. Res.49 (2), 175-187. · Zbl 0743.76014
[10] Connel, B.S.H. & Yue, D.K.P.2007Flapping dynamics of a flag in a uniform stream. J. Fluid Mech.581, 33-67. · Zbl 1124.76011
[11] Diamant, H.2021Parametric excitation of wrinkles in elastic sheets on elastic and viscoelastic substrates. Eur. Phys. J. E44 (6), 78.
[12] Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M.T.2021Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot.6 (51), eaay2627.
[13] Fargette, A., Neukirch, S. & Antkowiak, A.2014Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett.112, 137802.
[14] Gomez, M., Moulton, D.E. & Vella, D.2017Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett.119, 144502.
[15] Goriely, A.2017The Mathematics and Mechanics of Biological Growth, 1st edn. Springer. · Zbl 1398.92003
[16] Grotberg, J.B. & Jensen, O.E.2004Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech.36 (1), 121-147. · Zbl 1081.76063
[17] Guan, X., Nguyen, N., Pocivavsek, L., Cerda, E. & Velankar, S.S.2023Flat, wrinkled, or ridged: relaxation of an elastic film on a viscous substrate undergoing continuous compression. Intl J. Solids Struct.275, 112242.
[18] Guan, X., Sarma, A.P., Hamesh, E.K., Yang, J., Nguyen, N., Cerda, E., Pocivavsek, L. & Velankar, S.S.2022Compression-induced buckling of thin films bonded to viscous substrates: uniform wrinkles vs localized ridges. Intl J. Solids Struct.254, 111843.
[19] Holmes, D.P., Tavakol, B., Froehlicher, G. & Stone, H.A.2013Control and manipulation of microfluidic flow via elastic deformations. Soft Matt.9, 7049-7053.
[20] Hosoi, A.E. & Mahadevan, L.2004Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett.93, 137802.
[21] Ishizaka, K. & Flanagan, J.L.1972Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Tech. J.51 (6), 1233-1268.
[22] Jiao, S. & Liu, M.2021Snap-through in graphene nanochannels: with application to fluidic control. ACS Appl. Mater. Interfaces13 (1), 1158-1168.
[23] Kim, S., Laschi, C. & Trimmer, B.2013Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol.31 (5), 287-294.
[24] King, J.R.1989The isolation oxidation of silicon. SIAM J. Appl. Maths49 (1), 264-280. · Zbl 0665.76108
[25] Kodio, O., Goriely, A. & Vella, D.2020Dynamic buckling of an inextensible elastic ring: linear and nonlinear analyses. Phys. Rev. E101, 053002.
[26] Kodio, O., Griffiths, I.M. & Vella, D.2017Lubricated wrinkles: imposed constraints affect the dynamics of wrinkle coarsening. Phys. Rev. Fluids2, 014202.
[27] Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S. & Craighead, H.2008The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microengng18 (5), 055026.
[28] Lamb, H.1945Hydrodynamics. Dover.
[29] Landau, L.D. & Lifshitz, E.M.1986Theory of Elasticity, 3rd edn. Butterworth-Heinemann. · Zbl 0010.23102
[30] Laskar, A., Manna, R.K., Shklyaev, O.E. & Balazs, A.C.2022Computer modeling reveals modalities to actuate mutable, active matter. Nat. Commun.13 (1), 2689.
[31] Lee, C.-Y., Chang, C.-L., Wang, Y.-N. & Fu, L.-M.2011Microfluidic mixing: a review. Intl J. Mol. Sci.12 (5), 3263-3287.
[32] Lighthill, M.J.1960Note on the swimming of slender fish. J. Fluid Mech.9 (2), 305-317.
[33] Liu, Y.Z., Kim, B.J. & Sung, H.J.2004Two-fluid mixing in a microchannel. Intl J. Heat Fluid Flow25 (6), 986-995.
[34] Manna, R.K., Laskar, A., Shklyaev, O.E. & Balazs, A.C.2022Harnessing the power of chemically active sheets in solution. Nat. Rev. Phys.4 (2), 125-137.
[35] Matia, Y. & Gat, A.D.2015Dynamics of elastic beams with embedded fluid-filled parallel-channel networks. Soft Robot.2 (1), 42-47.
[36] Munk, M.M.1924 The aerodynamic forces on airship hulls. NACA Tech. Rep. TR-184.
[37] Neukirch, S., Frelat, J., Goriely, A. & Maurini, C.2012Vibrations of post-buckled rods: the singular inextensible limit. J. Sound Vib.331 (3), 704-720.
[38] O’Kiely, D., Box, F., Kodio, O., Whiteley, J. & Vella, D.2020Impact on floating thin elastic sheets: a mathematical model. Phys. Rev. Fluids5, 014003.
[39] Oshri, O.2021Volume-constrained deformation of a thin sheet as a route to harvest elastic energy. Phys. Rev. E103, 033001.
[40] Pandey, A., Moulton, D.E., Vella, D. & Holmes, D.P.2014Dynamics of snapping beams and jumping poppers. Europhys. Lett.105 (2), 24001.
[41] Pedley, T.J., Brook, B.S. & Seymour, R.S.1996Blood pressure and flow rate in the giraffe jugular vein. Phil. Trans. R. Soc. Lond. B351 (1342), 855-866.
[42] Pocivavsek, L., Ye, S.-H., Pugar, J., Tzeng, E., Cerda, E., Velankar, S. & Wagner, W.R.2019Active wrinkles to drive self-cleaning: a strategy for anti-thrombotic surfaces for vascular grafts. Biomaterials192, 226-234.
[43] Preston, D.J., Jiang, H.J., Sanchez, V., Rothemund, P., Rawson, J., Nemitz, M.P., Lee, W.-K., Suo, Z., Walsh, C.J. & Whitesides, G.M.2019A soft ring oscillator. Sci. Robot.4 (31), eaaw5496.
[44] Rothemund, P., Ainla, A., Belding, L., Preston, D.J., Kurihara, S., Suo, Z. & Whitesides, G.M.2018A soft, bistable valve for autonomous control of soft actuators. Sci. Robot.3 (16), eaar7986.
[45] Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezić, I., Stone, H.A. & Whitesides, G.M.2002Chaotic mixer for microchannels. Science295 (5555), 647-651.
[46] Thorsen, T., Maerkl, S.J. & Quake, S.R.2002Microfluidic large-scale integration. Science298 (5593), 580-584.
[47] Wolfram Research2018Mathematica, Version 11.0.
[48] Zhang, W.-M., Yan, H., Peng, Z.-K. & Meng, G.2014Electrostatic pull-in instability in MEMS/NEMS: a review. Sensors Actuators A214, 187-218.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.