×

Free vibrations of functionally graded graphene-reinforced composite blades with varying cross-sections. (English) Zbl 1535.74182

Summary: In this paper, free vibrations of functionally graded (FG) graphene-reinforced composite blades with varying cross-sections are investigated. Considering the cantilever boundary conditions, the dynamic model of a rotating blade is simplified as a varying cross-sections plate with pre-installed angle and pre-twisted angle. As a reinforcement, the graphene platelets (GPLs) are distributed either uniformly or gradiently on the plate along its thickness direction. The effective Young’s modulus is formulated by the modified Halpin-Tsai model. The rule of mixture is applied to calculate the effective Poisson’s ratio and mass density. The equations of motion are established by using the first-order shear deformation theory and von Karman geometric nonlinear theory. Based on the Rayleigh-Ritz method, the natural frequencies of the rotating FG blade reinforced with the GPLs are obtained. The accuracy of the present method is verified by comparing the obtained results with those of the finite element method and published literature. A comprehensive parametric study is conducted, with a particular focus on the effects of distribution pattern, weight fraction, and geometries size of the GPLs together with dimensional parameters of varying cross-sections blade on the dynamics of the FG blades reinforced with the GPLs.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Oh, S. Y., Librescu, L. and Song, O., Thermoelastic modeling and vibration of functionally graded thin-walled rotating blades, AIAA J.41 (2003) 2051-2061.
[2] Carrera, E., Filippi, M. and Zappino, E., Free vibration analysis of rotating composite blades via Carrera unified formulation, Compos. Struct.106 (2013) 317-325.
[3] Park, J. H., Park, H. Y., Jeong, S. Y., Lee, S. I., Shin, Y. H. and Park, J. P., Linear vibration analysis of rotating wind-turbine blade, Curr. Appl. Phys.10 (2010) 332-334.
[4] Chandiramani, N. K., Shete, C. D. and Librescu, L. I., Vibration of higher-order shearable pre-twisted rotating composite blades, Int. J. Mech. Sci.45(12) (2003) 2017-2041. · Zbl 1112.74388
[5] Luo, R., Free transverse vibration of rotating blades in a bladed disk assembly, Acta Mech.223 (2012) 1385-1396. · Zbl 1401.74131
[6] Roy, P. A. and Meguid, S. A., Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine, Acta Mech.229 (2018) 3355-3373. · Zbl 1396.74060
[7] Bahaadini, R. and Saidi, A. R., Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow, Aerosp. Sci. Technol.80 (2018) 381-391.
[8] Arabjamaloei, Z., Mofidi, M., Hosseini, M. and Bahaadini, R., Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment, Eur. Phys. J. Plus134(11) (2019) 556.
[9] Sinha, S. K. and Turner, K. E., Natural frequencies of a pre-twisted blade in a centrifugal force field, J. Sound Vib.330 (2011) 2655-2681.
[10] Yoo, H. H., Park, J. H. and Park, J., Vibration analysis of rotating pre-twisted blades, Comp. Struct.79 (2001) 1811-1819.
[11] Sun, J., Kari, L. and Lopez Arteaga, I., A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle, J. Sound Vib.332 (2013) 1355-1371.
[12] He, L. H., Lim, C. W. and Kitipornchai, S., A non-discretized global method for free vibration of generally laminated fibre-reinforced pretwisted cantilever plates, Comput. Mech.26(2) (2000) 197-207. · Zbl 1162.74373
[13] Niu, Y., Zhang, W. and Guo, X. Y., Free vibration of rotating pre-twisted functionally graded composite cylindrical panel reinforced with graphene platelets, Eur. J. Mech. A/Solids77 (2019) 103798. · Zbl 1475.74057
[14] Fang, J. S. and Zhou, D., Free vibration analysis of rotating Mindlin plates with variable thickness, Int. J. Struct. Stab. Dyn.17(4) (2017) 1750046. · Zbl 1535.74198
[15] Hashemi, S. H., Farhadi, S. and Carra, S., Free vibration analysis of rotating thick plates, J. Sound Vib.323 (2009) 366-384.
[16] Li, L. and Zhang, D. G., Free vibration analysis of rotating functionally graded rectangular plates, Compos. Struct.136 (2016) 493-504.
[17] Lim, C. W., A spiral model for bending of non-linearly pre-twisted helicoidal structures with lateral loading, Int. J. Solids Struct.40 (2003) 4257-4279. · Zbl 1054.74671
[18] Hu, X. X., Sakiyama, T., Matsuda, H. and Morita, C., Fundamental vibration of rotating cantilever blades with pre-twist, J. Sound Vib.271 (2004) 47-66.
[19] Kee, Y. J. and Shin, S. J., Structural dynamic modeling for rotating blades using three dimensional finite elements, J. Mech. Sci. Technol.29 (2015) 1607-1618.
[20] Liu, L. T., Hao, Y. X., Zhang, W. and Chen, J., Free vibration analysis of rotating pre-twisted functionally graded sandwich blades, Int. J. Aerosp. Eng.2018 (2018) 2727452.
[21] Chen, J. and Li, Q. S., Vibration characteristics of a rotating pre-twisted composite laminated blade, Compos. Struct.208 (2019) 78-90.
[22] Kee, Y. J. and Kim, J. H., Vibration characteristics of initially twisted rotating shell type composite blades, Compos. Struct.64 (2004) 151-159.
[23] Sinha, S. K. and Zylka, R. P., Vibration analysis of composite airfoil blade using orthotropic thin shell bending theory, Int. J. Mech. Sci.121 (2017) 90-105.
[24] Sun, J., Lopez Arteaga, I. and Kari, L., General shell model for a rotating pre-twisted blade, J. Sound Vib.332 (2013) 5804-5820.
[25] Shim, J. K. and Na, S., Modeling and vibration feedback control of rotating tapered composite thin-walled blade, KSME Int. J.17 (2003) 380-390.
[26] Vadiraja, D. N. and Sahasrabudhe, A. D., Vibration analysis and optimal control of rotating pre-twisted thin-walled beams using MFC actuators and sensors, Thin-Walled Struct.47 (2009) 555-567.
[27] Lim, H. S., Chung, J. and Yoo, H. H., Modal analysis of a rotating multi-packet blade system, J. Sound Vib.325 (2009) 513-531.
[28] Kong, X. W., Li, J. and Li, B., Finite element analysis of rolling process for variable cross-section blade, Journal of Central South University20, 3431-3436, 2013.
[29] Hamdi, H., Mrad, C., Hamdi, A. and Nasr, R., Dynamic response of a horizontal axis wind turbine blade under aerodynamic, gravity and gyroscopic effects, Appl. Acoust.86 (2014) 154-164.
[30] Kumar, P. R., Rao, K. M. and Rao, N. M., Effect of taper on free vibration of functionally graded rotating beam by Mori-Tanaka method, J. Instn Engrs (India): Ser. C100 (2018) 729-736.
[31] Liew, K. M. and Lim, C. W., A global continuum Ritz formulation for flexural vibration of pretwisted trapezoidal plates with one edge built in, Comp. Methods Appl. Mech. Eng.114(3-4) (1994) 233-247.
[32] Lim, C. W. and Liew, K. M., Vibration of pretwisted cantilever trapezoidal symmetric laminates, Acta Mech.111(3-4) (1995) 193-208. · Zbl 0867.73041
[33] Liew, K. M. and Lim, C. W., Vibratory characteristics of pretwisted cantilever trapezoids of unsymmetric laminates, AIAA J.34(5) (1996) 1041-1050. · Zbl 0900.73328
[34] Lim, C. W., Liew, K. M. and Kitipornchai, S., Free vibration of pretwisted cantilevered composite shallow conical shells, AIAA J.35(2) (1997) 327-333. · Zbl 0883.73042
[35] Dosaev, M. Z., Klimina, L. A., Lokshin, B. Y. and Selyutskiy, Y. D., On wind turbine blade design optimization, J. Comp. Syst. Sci. Int.53 (2014) 402-409. · Zbl 1308.93167
[36] Oh, Y. and Yoo, H. H., Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion, J. Sound Vib.431 (2018) 20-39.
[37] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z. and Koratkar, N., Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano3 (2009) 3884-3890.
[38] Parashar, A. and Mertiny, P., Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite, Nanosc. Res. Lett.7 (2012) 515-520.
[39] King, J. A., Klimek, D. R., Miskioglu, I. and Odegard, G. M., Mechanical properties of graphene nanoplatelet/epoxy composites, J. Appl. Polym. Sci.128 (2013) 4217-4223.
[40] Song, M., Kitipornchai, S. and Yang, J., Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct.159 (2017) 579-588.
[41] Yang, J., Wu, H. and Kitipornchai, S., Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Compos. Struct.161 (2017) 111-118.
[42] Dong, Y. H., Zhu, B., Wang, Y., Li, H. and Yang, J., Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load, J. Sound Vib.437 (2018) 79-96.
[43] Lei, Z. X. and Tong, L. H., Analytical solution of low-velocity impact of graphene- reinforced composite functionally graded cylindrical shells, J. Braz. Soc. Mech. Sci. Eng.41 (2019) 486.
[44] Zhao, Z., Feng, C., Wang, Y. and Yang, J., Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs), Compos. Struct.180 (2017) 799-808.
[45] Yao, M. H., Ma, L. and Zhang, W., Nonlinear dynamics of the high-speed rotating plate, Int. J. Aerosp. Eng.2018 (2018) 5610915.
[46] Gu, X. J., Hao, Y. X., Zhang, W. and Chen, J., Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load, Thin-Walled Struct.144 (2019) 106267.
[47] Puneet, K. and Srinivas, J., Vibration, buckling and bending behavior of functionally graded multi-walled carbon nanotube reinforced polymer composite plates using the layer-wise formulation, Compos. Struct.177 (2017) 158-170.
[48] Arefi, M., Bidgoli, E. M. R., Dimitri, R. and Tornabene, F.. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerosp. Sci. Technol.81 (2018) 108-117.
[49] Yoo, H. H. and Kim, S. K., Flapwise bending vibration of rotating plates, Int. J. Numer. Methods Eng.55 (2002) 785-802. · Zbl 1024.74028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.