×

Strong resonance in two-dimensional non-Boussinesq convection. (English) Zbl 0836.76088

The paper treats two-dimensional convection of a viscous and heat- conducting fluid in a two-dimensional rectangle heated from below. Using usual Oberbeck-Boussinesq approximation, the internal viscous heating and the temperature dependence of the viscosity (Arrhenius-type law) are taken into account. Under these assumptions, the authors investigate the solutions of the resulting \(O(2)\) symmetric bifurcation problem in dependence on the Prandtl number Pr. They found that there exist critical values of the Prandtl number \(\text{Pr}_s\) and \(\text{Pr}_c\); for \(\text{Pr}_s < \text{Pr} < \text{Pr}_c\) time-dependent solutions persist, and for values greater than \(\text{Pr}_c\) (or smaller than \(\text{Pr}_s)\) only stationary patterns are observed. If the viscosity ratio is relatively large compared to other coefficients (as in liquid metals), then there exists a stable heterocline orbit close to the onset of convection for small Prandtl numbers. A similar result with small amplitudes is shown if \(\text{Pr}_s < \text{Pr} < \text{Pr}_c\) and some non-Oberbeck-Boussinesq effects are taken into account. The authors show that for substances with small Prandtl numbers the viscous heating coefficient that appears in the equations of bifurcation is too small to affect the dynamics.
The paper is carefully prepared and presented. It is aimed at researchers having good knowledges of fluid mechanics and heat transfer.

MSC:

76R10 Free convection
76E15 Absolute and convective instability and stability in hydrodynamic stability
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] E. Knobloch and J. Guckenheimer, ”Convective transitions induced by a varying aspect ratio,” Phys. Rev. A 27, 408 (1983).PLRAAN1050-2947
[2] H. Kidachi, ”Sidewall effect on the pattern formation of the Rayleigh-Bénard convection, ”Prog. Theor. Phys. 68, 49 (1982).PTPKAV0033-068X · Zbl 1098.76540
[3] P. Metzener, ”The effect of rigid sidewalls on nonlinear two-dimensional Bénard convection,” Phys. Fluids 29, 1373 (1986).PFLDAS0031-9171 · Zbl 0592.76051
[4] P. Hall and I. C. Walton, ”Bénard convection in a finite box: Secondary and imperfect bifurcations,” J. Fluid Mech. 90, 377 (1979).JFLSA70022-1120
[5] F. H. Busse and A. C. Or, ”Subharmonic and asymmetric convection rolls,” J. Appl. Math. Phys. (ZAMP) 37, 608 (1986). · Zbl 0615.76052 · doi:10.1007/BF00945433
[6] D. Armbruster, ”O(2)-symmctric bifurcation theory for convection rolls,” Physica D 27, 433 (1987).PDNPDT0167-2789
[7] G. Dangelmayr, ”Steady state mode interactions in presence of O(2)symmetry,” Dyn. Stab. Syst. 1, 159 (1986).0268-1110
[8] D. Armbruster and G. Dangelmayr, ”Steady state mode interactions in presence of O(2) symmetry and nonflux boundary value problems,” Contrib. Math. 56, 53 (1986). · Zbl 0602.58039 · doi:10.1090/conm/056/855084
[9] D. Armbruster, J. Guckenheimer, and P. Holmes, ”Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry,” Physica D 29, 257 (1988).PDNPDT0167-2789 · Zbl 0634.34027
[10] M. R. E. Proctor and C. A. Jones, ”Strong spatial resonance and traveling waves in Bénard convection,” Phys. Lett. A 121, 224 (1987).PYLAAG0375-9601
[11] M. R. E. Proctor and C. A. Jones, ”The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance,” J. Fluid Mech. 188, 301 (1988).JFLSA70022-1120 · Zbl 0649.76018
[12] K. Julien, Ph.D. dissertation, University of Cambridge, 1991.
[13] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Fluids (McGraw-Hill, New York, 1977).
[14] S. Chandrasekhar, Hydrodynamic and Hydrodynamic Stability (Oxford University, New York, 1961).
[15] B. J. Matkowsky, ”A simple nonlinear dynamic stability problem,” Bull. Am. Math. Soc. 76, 620 (1970).BAMOAD0002-9904 · Zbl 0195.11102
[16] G. Iooss, A. Mielke, and Y. Demay, ”Theory of steady Ginzburg-Landau equation in hydrodynamic stability problems,” Eur. J. Mech. B/Fluids 8, 229 (1989).EJBFEV0997-7546 · Zbl 0675.76060
[17] S. Rosenblat, S. H. Davis, and G. M. Homsy, ”Nonlinear Marangoni convection in bounded layers. Part 1. Circular cylindrical containers,” J. Fluid Mech. 120, 91 (1982).JFLSA70022-1120 · Zbl 0498.76038
[18] S. Rosenblat, S. H. Davis, and G. M. Homsy, ”Nonlinear Marangoni convection in bounded layers. Part 2. Rectangular cylindrical containers,” J. Fluid Mech. 120, 123 (1982).JFLSA70022-1120 · Zbl 0498.76039
[19] B. Gjievik, ”Occurrence of finite-amplitude surface waves on falling liquid films,” Phys. Fluids 13, 1918 (1970).PFLDAS0031-9171
[20] S. W. Joo and S. H. Davis, ”Instabilities of three-dimensional viscous falling films,” J. Fluid Mech. 242, 529 (1992).JFLSA70022-1120 · Zbl 0825.76193
[21] A. Hill and I. Stewart, ”Hopf steady state mode interactions with O(2)symmetry,” Dyn. Stab. Syst. 6, 149 (1991).0268-1110 · Zbl 0826.34036
[22] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983). · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[23] J. K. Hale, Ordinary Differential Equations (Wiley, New York, 1969). · Zbl 0186.40901
[24] Metals Reference Book, 5th ed., edited by C. J. Smithell (Butterworths, London, 1976).
[25] R. D. Lide, Handbook of Chemistry and Physics, 71st ed. (Chemical Rubber, Cleveland, 1990).
[26] Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaft und Technik/Numerical Data and Functional Relationships in Science and Technology, New Series 1961–1985, edited by K.-H. Hellwege (Springer-Verlag, Berlin, 1967).
[27] F. M. Richter, H. C. Nataf, and S. F. Daly, ”Heat transfer and horizontally averaged temperature of convection with large viscosity variations,” J. Fluid Mech. 129, 173 (1983).JFLSA70022-1120
[28] B. Gebhart, Y. Jaluria, R. L. Mohajon, and B. Sammakia, Buoyancy induced Flows and Transport (Hemisphere, Washington, D.C., 1988). · Zbl 0699.76001
[29] A. Libchaber and J. Maurer, in Nonlinear Phenomena at Phase Transitions and Instabilities, edited by T. Riste (Plenum, New York, 1981), p. 259.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.