×

Non-blind and blind deconvolution under Poisson noise using fractional-order total variation. (English) Zbl 1500.94002

Summary: In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts. Poisson noise often occurs when photon counting is involved in such imaging modalities as X-ray, positron emission tomography, and fluorescence microscopy. Meanwhile, blurring is also inevitable due to the physical mechanism of an imaging system, which can be modeled as a convolution of the image with a point spread function. In this paper, we consider both non-blind and blind image deblurring models that deal with Poisson noise. In the pursuit of high-order smoothness of a restored image, we propose a fractional-order total variation regularization to remove the blur and Poisson noise simultaneously. We develop two efficient algorithms based on the alternating direction method of multipliers, while an expectation-maximization algorithm is adopted only in the blind case. A variety of numerical experiments have demonstrated that the proposed algorithms can efficiently reconstruct piecewise smooth images degraded by Poisson noise and various types of blurring, including Gaussian and motion blurs. Specifically for blind image deblurring, we obtain significant improvements over the state of the art.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65F22 Ill-posedness and regularization problems in numerical linear algebra
52A41 Convex functions and convex programs in convex geometry
49N45 Inverse problems in optimal control

Software:

PhaseLift
Full Text: DOI

References:

[1] Aljadaany, R., Pal, D.K., Savvides, M.: Douglas-Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
[2] Almeida, MS; Figueiredo, M., Deconvolving images with unknown boundaries using the alternating direction method of multipliers, IEEE Trans. Image process., 22, 8, 3074-3086 (2013) · Zbl 1373.94019
[3] Azzari, L., Foi, A.: Variance stabilization in Poisson image deblurring. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 728-731. IEEE (2017)
[4] Babacan, SD; Molina, R.; Katsaggelos, AK, Variational Bayesian blind deconvolution using a total variation prior, IEEE Trans. Image Process., 18, 1, 12-26 (2008) · Zbl 1371.94479
[5] Bahmani, S.; Romberg, J., Lifting for blind deconvolution in random mask imaging: identifiability and convex relaxation, SIAM J. Imaging Sci., 8, 4, 2203-2238 (2015) · Zbl 1330.94006
[6] Bajić, B., Lindblad, J., Sladoje, N.: Blind restoration of images degraded with mixed Poisson-Gaussian noise with application in transmission electron microscopy. In: International Symposium on Biomedical Imaging, pp. 123-127. IEEE (2016)
[7] Beck, A.; Teboulle, M., Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18, 11, 2419-2434 (2009) · Zbl 1371.94049
[8] Bertero, M.; Boccacci, P.; Desiderà, G.; Vicidomini, G., Image deblurring with Poisson data: from cells to galaxies, Inverse Probl., 25, 12, 123006 (2009) · Zbl 1186.85001
[9] Biggs, DS; Andrews, M., Acceleration of iterative image restoration algorithms, Appl. Opt., 36, 8, 1766-1775 (1997)
[10] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[11] Candès, EJ; Strohmer, T.; Voroninski, V., Phaselift: exact and stable signal recovery from magnitude measurements via convex programming, Commun. Pure Appl. Math., 66, 8, 1241-1274 (2013) · Zbl 1335.94013
[12] Carasso, AS, Direct blind deconvolution, SIAM J. Appl. Math., 61, 6, 1980-2007 (2001) · Zbl 0980.68123
[13] Chambolle, A.; Pock, T., An introduction to continuous optimization for imaging, Acta Numer., 25, 161-319 (2016) · Zbl 1343.65064
[14] Chan, RH; Chan, TF; Wong, C., Cosine transform based preconditioners for total variation deblurring, IEEE Trans. Image Process., 8, 10, 1472-1478 (1999)
[15] Chan, RH; Tao, M.; Yuan, X., Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers, SIAM J. Imaging Sci., 6, 1, 680-697 (2013) · Zbl 1279.68322
[16] Chan, TF; Wong, C., Total variation blind deconvolution, IEEE Trans. Image Process., 7, 3, 370-375 (1998)
[17] Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 Papers, pp. 1-8 (2009)
[18] Chowdhury, MR; Zhang, J.; Qin, J.; Lou, Y., Poisson image denoising based on fractional-order total variation, Inverse Probl. Imaging, 14, 1, 77 (2020) · Zbl 1455.94013
[19] Dempster, AP; Laird, NM; Rubin, DB, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B (Methodol.), 39, 1, 1-22 (1977) · Zbl 0364.62022
[20] Dey, N.; Blanc-Feraud, L.; Zimmer, C.; Roux, P.; Kam, Z.; Olivo-Marin, J.; Zerubia, J., Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsoft Res. Technol., 69, 4, 260-266 (2006)
[21] Donatelli, M.; Estatico, C.; Martinelli, A.; Serra-Capizzano, S., Improved image deblurring with anti-reflective boundary conditions and re-blurring, Inverse Probl., 22, 6, 2035 (2006) · Zbl 1167.65474
[22] Dupé, F.X., Fadili, M.J., Starck, J.L.: Image deconvolution under Poisson noise using sparse representations and proximal thresholding iteration. In: International Conference on Acquisition , Speech Signal Process, pp. 761-764. IEEE (2008)
[23] Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics, vol. 25, pp. 787-794. ACM (2006) · Zbl 1371.94125
[24] Figueiredo, M.; Bioucas-Dias, J., Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19, 12, 3133-3145 (2010) · Zbl 1371.94128
[25] Fish, D.; Brinicombe, A.; Pike, E.; Walker, J., Blind deconvolution by means of the Richardson-Lucy algorithm, J. Opt. Soc. Am. A, 12, 1, 58-65 (1995)
[26] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2, 1, 17-40 (1976) · Zbl 0352.65034
[27] Glowinski, R.; Marroco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires, ESAIM Math. Model. Numer. Anal., 9, R2, 41-76 (1975) · Zbl 0368.65053
[28] Hansen, PC; Nagy, J.; O’leary, DP, Deblurring Images: Matrices, Spectra, and Filtering (2006), Philadelphia: SIAM, Philadelphia · Zbl 1112.68127
[29] He, T.; Hu, J.; Huang, H., Hybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolution, Appl. Opt., 57, 35, 10243-10256 (2018)
[30] Huang, J.; Huang, TZ, A nonstationary accelerating alternating direction method for frame-based Poissonian image deblurring, J. Comput. Appl. Math., 352, 181-193 (2019) · Zbl 1454.94016
[31] Hunt, BR, The application of constrained least squares estimation to image restoration by digital computer, IEEE Trans. Comput., 100, 9, 805-812 (1973)
[32] Hunter, DR; Lange, K., A tutorial on MM algorithms, Am. Stat., 58, 1, 30-37 (2004)
[33] Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision, pp. 668-684 (2018)
[34] Karush, W.: Minima of functions of several variables with inequalities as side constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago (1939)
[35] Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 233-240. IEEE (2011)
[36] Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, E. (ed.) Berkeley Symposium on Mathematics of Stats and Probability, pp. 481-492. University of California Press, Berkeley (1951)
[37] Kundur, D.; Hatzinakos, D., Blind image deconvolution, IEEE Signal Process. Mag., 13, 3, 43-64 (1996)
[38] Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183-8192 (2018)
[39] Lai, W., Huang, J., Hu, Z., Ahuja, N., Yang, M.: A comparative study for single image blind deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-1709 (2016)
[40] Landi, G.; Piccolomini, EL, An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise, Comput. Med. Imaging Graph., 36, 1, 38-46 (2012)
[41] Lange, K., MM Optimization Algorithms (2016), Philadelphia: SIAM, Philadelphia · Zbl 1357.90002
[42] Le, T.; Chartrand, R.; Asaki, TJ, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vis., 27, 3, 257-263 (2007)
[43] Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657-2664 (2011)
[44] Levin, A.; Weiss, Y.; Durand, F.; Freeman, WT, Understanding blind deconvolution algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 33, 12, 2354-2367 (2011)
[45] Li, L.; Pan, J.; Lai, WS; Gao, C.; Sang, N.; Yang, MH, Blind image deblurring via deep discriminative priors, Int. J. Comput. Vis., 127, 8, 1025-1043 (2019)
[46] Li, S., Tang, G., Wakin, M.B.: Simultaneous blind deconvolution and phase retrieval with tensor iterative hard thresholding. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 2977-2981. IEEE (2019)
[47] Liu, H., Gu, J., Huang, C.: Image deblurring by generalized total variation regularization and least squares fidelity. In: International Conference on Information and Automation, pp. 1945-1949. IEEE (2016)
[48] Ljubenović, M., Figueiredo, M.A.: Blind image deblurring using class-adapted image priors. In: IEEE International Conference on Image Processing (ICIP), pp. 490-494 (2017)
[49] Lou, Y.; Zhang, X.; Osher, SJ; Bertozzi, AL, Image recovery via nonlocal operators, J. Sci. Comput., 42, 2, 185-197 (2010) · Zbl 1203.65088
[50] Lucy, LB, An iterative technique for the rectification of observed distributions, Astrophys. J., 79, 745 (1974)
[51] Ma, L.; Moisan, L.; Yu, J.; Zeng, T., A dictionary learning approach for Poisson image deblurring, IEEE Trans. Med. Imaging, 32, 7, 1277-1289 (2013)
[52] McCallum, BC, Blind deconvolution by simulated annealing, Opt. Commun., 75, 2, 101-105 (1990)
[53] Perrone, D.; Favaro, P., A clearer picture of total variation blind deconvolution, IEEE Trans. Pattern Anal. Mach. Intell., 38, 6, 1041-1055 (2015)
[54] Prato, M., La Camera, A., Bonettini, S.: An alternating minimization method for blind deconvolution from poisson data. In: Journal of Physics: Conference Series, vol. 542, p. 012006. IOP Publishing (2014)
[55] Qin, J., Yi, X., Weiss, S.: A novel fluorescence microscopy image deconvolution approach. In: IEEE Intrnational Symposium Biomedical Imaging, pp. 441-444 (2018)
[56] Qin, J., Yi, X., Weiss, S., Osher, S.: Shearlet-TGV based fluorescence microscopy image deconvolution. UCLA CAM Report (14-32) (2014)
[57] Richardson, WH, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. A, 62, 1, 55-59 (1972)
[58] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[59] Ruiz, P.; Zhou, X.; Mateos, J.; Molina, R.; Katsaggelos, AK, Variational Bayesian blind image deconvolution: A review, Dig. Sig. Process., 47, 116-127 (2015)
[60] Sawatzky, A., Brune, C., Kosters, T., Wubbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics (2090), pp. 71-142 (2013) · Zbl 1342.94026
[61] Schuler, CJ; Hirsch, M.; Harmeling, S.; Schölkopf, B., Learning to deblur, IEEE Trans. Pattern Anal. Mach. Intell., 38, 7, 1439-1451 (2015)
[62] Setzer, S.; Steidl, G.; Teuber, T., Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image R., 21, 3, 193-199 (2010)
[63] Shan, Q.; Jia, J.; Agarwala, A., High-quality motion deblurring from a single image, ACM Trans. Graph., 27, 3, 73 (2008)
[64] Shepp, LA; Vardi, Y., Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging, 1, 2, 113-122 (1982)
[65] Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 769-777 (2015)
[66] Tikhonov, AN; Goncharsky, AV; Stepanov, V.; Yagola, AG, Numerical Methods for the Solution of Ill-Posed Problems (2013), Berlin: Springer, Berlin
[67] Vono, M., Dobigeon, N., Chainais, P.: Bayesian image restoration under Poisson noise and log-concave prior. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 1712-1716. IEEE (2019)
[68] Wang, Z.; Bovik, AC; Sheikh, HR; Simoncelli, EP, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 4, 600-612 (2004)
[69] Xu, J.; Chang, HB; Qin, J., Domain decomposition method for image deblurring, J. Comput. Appl. Math., 271, 401-414 (2014) · Zbl 1334.68287
[70] Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 157-170. Springer (2010)
[71] Yan, M., Chen, J., Vese, L.A., Villasenor, J., Bui, A., Cong, J.: EM + TV based reconstruction for cone-beam ct with reduced radiation. In: International Symposium on Visual Computing, pp. 1-10. Springer (2011)
[72] You, Y.; Kaveh, M., A regularization approach to joint blur identification and image restoration, IEEE Trans. Image Process., 5, 3, 416-428 (1996)
[73] You, Y.; Kaveh, M., Blind image restoration by anisotropic regularization, IEEE Trans. Image Process., 8, 3, 396-407 (1999)
[74] Zhang, J.; Wei, Z.; Xiao, L., Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vis., 43, 1, 39-49 (2012) · Zbl 1255.68278
[75] Zhou, L.; Tang, J., Fraction-order total variation blind image restoration based on l1-norm, Appl. Math. Model., 51, 469-476 (2017) · Zbl 1480.94014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.