×

Dynamics of a three-species food chain model with fear effect. (English) Zbl 1466.92220

Summary: In this paper a three-species food chain model is formulated to investigate the impact of fear. First, we derive the predator’s functional response by using the classical Holling’s time budget argument and formulate a three-species food chain model where the cost and benefit of anti-predator behaviours are included. Then we study the dissipativity of the system and perform analysis on the existence and stability of equilibria. At last, we use numerical simulations to more visually explore the effects of fear on three species. The results show that the predator’s fear effect can transform the system from chaotic dynamics to a stable state. Our results may provide some useful biological insights into ecosystems containing predator-prey interactions.

MSC:

92D40 Ecology
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Altendorf, K. B.; Laundré, J. W.; Brown, J. S.; González, C. A.L., Assessing effects of predation risk on foraging behavior of mule deer, J Mammal, 82, 2, 430-439 (2001)
[2] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J Anim Ecol, 44, 331-340 (1975)
[3] Chen, S.; Liu, Z.; Shi, J., Nonexistence of nonconstant positive steady states of a diffusive predatorprey model with fear effect, J Nonlinear Model Anal, 1, 47-56 (2019)
[4] Creel, S.; Christianson, D.; Liley, S.; Winnie, J. A., Predation risk affects reproductive physiology and demography of elk, Science, 315, 960-960 (2007)
[5] Creel, S.; Christianson, D., Relationships between direct predation and risk effects, Trends Ecol Evol, 23, 4, 194-201 (2008)
[6] 465601
[7] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V., A model for trophic interactions, Ecology, 56, 881-892 (1975)
[8] Duan, D.; Niu, B.; Wei, J., Hopf-hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos Solitons Fractals, 123, 206-216 (2019) · Zbl 1448.35029
[9] Fan, M.; Kuang, Y., Dynamics of a nonautonomous predator-prey system with the beddington-deangelis functional response, J Math Anal Appl, 295, 1, 15-39 (2004) · Zbl 1051.34033
[10] Fan, M.; Kuang, Y.; Feng, Z., Cats protecting birds revisited, Bull Math Biol, 67, 5, 1081-1106 (2005) · Zbl 1334.92334
[11] Fan, S., A new extracting formula and a new distinguishing means on the one variable cubic equation, Nat Sci J Hainan Teach Coll, 2, 2, 91-98 (1989)
[12] Holling, C. S., Some characteristics of simple types of predation and parasitism, Can Entomol, 91, 7, 385-398 (1959)
[13] Hua, F.; Sieving, K. E.; Fletcher, R. J.; Wright, C. A., Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance, Behav Ecol, 25, 3, 509-519 (2014)
[14] Kundu, K.; Pal, S.; Samanta, S.; Sen, A.; Pal, N., Impact of fear effect in a discrete-time predator-prey system, Bull Calcutta Math Soc, 110, 245-264 (2018)
[15] Kumar, V.; Kumari, N., Controlling chaos in three species food chain model with fear effect, AIMS Mathematics, 5, 2, 828-842 (2020) · Zbl 1484.92075
[16] Hwang, T. W., Global analysis of the predator-prey system with beddington-deangelis functional response, J Math Anal Appl, 281, 1, 395-401 (2003) · Zbl 1033.34052
[17] Hwang, T. W., Uniqueness of limit cycles of the predator-prey system with beddington-deangelis functional response, J Math Anal Appl, 290, 1, 113-122 (2004) · Zbl 1086.34028
[18] LaSalle, J. P., The stability of dynamical systems (1976), SIAM: SIAM Philadelphia · Zbl 0364.93002
[19] Lima, S. L.; Dill, L. M., Behavioral decisions made under the risk of predation: a review and prospectus, Can J Zool, 68, 4, 619-640 (1990)
[20] Mischaikow, K.; Smith, H.; Thieme, H. R., Asymptotically autonomous semiflows: chain recurrence and lyapunov functions, Trans Am Math Soc, 347, 5, 1669-1685 (1995) · Zbl 0829.34037
[21] Mondal, S.; Maiti, A.; Samanta, G. P., Effects of fear and additional food in a delayed predator-prey model, Biophys Rev Lett, 13, 04, 157-177 (2018)
[22] Naji, R. K.; Balasim, A. T., Dynamical behavior of a three species food chain model with beddington-deangelis functional response, Chaos Solitons Fractals, 32, 5, 1853-1866 (2007) · Zbl 1195.92061
[23] Panday, P.; Pal, N.; Samanta, S.; Chattopadhyay, J., Stability and bifurcation analysis of a three-species food chain model with fear, Int J Bifurcation Chaos, 28, 01, 1850009 (2018) · Zbl 1386.34093
[24] Panday, P.; Pal, N.; Samanta, S.; Chattopadhyay, J., A three species food chain model with fear induced trophic cascade, Int J Appl Comput Math, 5, 4, 100 (2019) · Zbl 1417.92215
[25] Preisser, E. L.; Bolnick, D. I.; Benard, M. F., Scared to death? the effects of intimidation and consumption in predator-prey interactions, Ecology, 86, 2, 501-509 (2005)
[26] Ripple, W. J.; Beschta, R. L., Wolves and the ecology of fear: can predation risk structure ecosystems?, Bioscience, 54, 8, 755-766 (2004)
[27] Ronkainen, H.; Ylönen, H., Behaviour of cyclic bank voles under risk of mustelid predation: do females avoid copulations?, Oecologia, 97, 3, 377-381 (1994)
[28] Sasmal, S. K., Population dynamics with multiple allee effects induced by fear factors-a mathematical study on prey-predator interactions, Appl Math Model, 64, 1-14 (2018) · Zbl 1480.92180
[29] Sasmal, S. K.; Takeuchi, Y., Dynamics of a predator-prey system with fear and group defense, J Math Anal Appl, 481, 1, 123471 (2020) · Zbl 1423.92222
[30] Suraci, J. P.; Clinchy, M.; Dill, L. M.; Roberts, D.; Zanette, L. Y., Fear of large carnivores causes a trophic cascade, Nat Commun, 7, 10698 (2016)
[31] Upadhyay, R. K.; Mishra, S., Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system, Math Biosci Eng, 16, 1, 338-372 (2019) · Zbl 1500.92097
[32] Wang, X.; Zanette, L.; Zou, X., Modelling the fear effect in predator-prey interactions, J Math Biol, 73, 1179-1204 (2016) · Zbl 1358.34058
[33] Wang, X.; Zou, X., Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull Math Biol, 79, 6, 1325-1359 (2017) · Zbl 1372.92095
[34] Wang, X.; Zou, X., Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math Biosci Eng, 15, 3, 775-805 (2018) · Zbl 1406.92530
[35] Wang, Y.; Zou, X., On a predator-prey system with digestion delay and anti-predation strategy, J Nonlinear Sci, 30, 1579-1605 (2020) · Zbl 1445.34121
[36] Wang, Y.; Zou, X., On mechanisms of trophic cascade caused by anti-predation response in food chain, Math Appl Sci Eng, 1, 181-206 (2020) · Zbl 1498.92313
[37] Ylönen, H., Weasels mustela nivalis suppress reproduction in cyclic bank voles clethrionomys glareolus, Oikos, 55, 1, 138-140 (1989)
[38] Ylönen, H.; Ronkainen, H., Breeding suppression in the bank vole as antipredatory adaptation in a predictable environment, Evol Ecol, 8, 6, 658-666 (1994)
[39] Ylönen, H., Vole cycles and antipredatory behaviour, Trends Ecol Evol, 9, 11, 426-430 (1994)
[40] Zanette, L. Y.; White, A. F.; Allen, M. C.; Clinchy, M., Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334, 6061, 1398-1401 (2011)
[41] Zhao, M.; Lv, S., Chaos in a three-species food chain model with a beddington-deangelis functional response, Chaos Solitons Fractals, 40, 5, 2305-2316 (2009) · Zbl 1198.37139
[42] Zhang, J.; Fan, M.; Kuang, Y., Rabbits killing birds revisited, Math Biosci, 203, 1, 100-123 (2006) · Zbl 1099.92082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.