×

Detection of Turing patterns in a three species food chain model via amplitude equation. (English) Zbl 1509.35037

Summary: Study of pattern formation in three species spatio-temporal food chain models with the help of amplitude equations within Turing domain is a much less explored area compared to that of two species prey-predator models. These models play a vital role in understanding the resource-consumer interactions at the successive trophic levels of respective ecosystems. In this work, we consider the spatio-temporal extension of a three species food chain model with Holling type-II functional response to describe the grazing pattern of both the intermediate and top predator populations. Conditions for Turing instability are derived. The thresholds for emergence and stability of various Turing patterns near the Turing bifurcation boundary are obtained with the help of amplitude equations using weakly nonlinear analysis. The analytical results are further verified with the help of extensive numerical simulations for the complete nonlinear model and both the results are compared for different sets of parameter values.

MSC:

35B36 Pattern formations in context of PDEs
35B32 Bifurcations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Turing, A. M., The chemical basis of morphogenesis, Philos Trans R Soc Lond B, 237, 37-72 (1952) · Zbl 1403.92034
[2] Banerjee, M.; Abbas, S., Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model, Ecol Complex, 21, 199-214 (2015)
[3] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of turing-hopf bifurcations, J Theor Biol, 245, 220-229 (2007) · Zbl 1451.92248
[4] Cantrell, R. S.; Cosner, C., Spatial ecology via reaction-diffusion equations (2003), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. England · Zbl 1059.92051
[5] Feng, P., On a diffusive predator-prey model with nonlinear harvesting, Math Biosci Eng, 11, 807-821 (2014) · Zbl 1304.35328
[6] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev Mod Phys, 65, 851-1112 (1993) · Zbl 1371.37001
[7] Murray, J. D., Mathematical biology (1989), Springer: Springer Heidelberg · Zbl 0682.92001
[8] Kopell, N.; Howard, L. N., Target pattern and spiral solutions to reaction-diffusion equations with more than one space dimension, Adv Appl Math, 2, 417-449 (1981) · Zbl 0486.35011
[9] Malchow, H.; Petrovskii, S. V.; Venturino, E., Spatiotemporal patterns in ecology and epidemiology (2008), Chapman & Hall/ CRC: Chapman & Hall/ CRC USA · Zbl 1298.92004
[10] Banerjee, M.; Petrovskii, S., Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theor Ecol, 4, 37-53 (2011)
[11] Malchow, H.; Radtke, B.; Kallache, M.; Medvinsky, A. B.; Tikhonov, D. A.; Petrovskii, S. V., Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion, Nonlinear Anal Real World Appl, 1, 53-67 (2000) · Zbl 0986.92041
[12] Volpert, V., Elliptic partial differential equations (2011), Birkhäuser · Zbl 1222.35002
[13] Hastings, A.; Powell, T., Chaos in a three-species food chain, Ecology, 72, 896-903 (1991)
[14] White, K. A.J.; Gilligan, C. A., Spatial heterogeneity in three-species, plant-parasite-hyperparasite, systems, Philos Trans R Soc Lond B, 353, 543-557 (1997)
[15] Othmer, H. G.; Scriven, L. E., Interactions of reaction and diffusion in open systems, Ind Eng Chem Fundam, 8, 303-313 (1969)
[16] Kuznetsov, Y. A.; Rinaldi, S., Remarks on food chain dynamics, Math Biosci, 134, 1-33 (1996) · Zbl 0844.92025
[17] Rao, F., Spatiotemporal complexity of a three-species ratio-dependent food chain model, Nonlinear Dyn, 76, 1661-1676 (2014) · Zbl 1314.92141
[18] Xie, Z., Turing instability in a coupled predator-prey model with different holling type functional responses, Discret Contin Dyn Syst Ser-S, 4, 1621-1628 (2011) · Zbl 1214.92072
[19] Zhang, L.; Liu, J.; Banerjee, M., Hopf and steady state bifurcation analysis in a ratio-dependent predator-prey model, Commun Nonlinear Sci Numer Simul, 44, 52-73 (2017) · Zbl 1465.92107
[20] Huang, T.; Zhang, H.; Yang, H.; Wang, N.; Zhang, F., Complex patterns in a space and time-discrete predator-prey model with Beddington-deAngelis functional response, Commun Nonlinear Sci Numer Simul, 43, 182-199 (2017) · Zbl 1466.92147
[21] Ermentrout, B.; Lewis, M., Pattern formation in systems with one spatially distributed species, Bull Math Biol, 59, 533-549 (1997) · Zbl 0908.92007
[22] Adamson, M. W.; Morozov, A. Y., Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition, Bull Math Biol, 74, 2004-2031 (2012) · Zbl 1329.92097
[23] Ni, X.; Yang, R.; Wang, W.; Lai, Y.; Grebogi, C., Basins of coexistence and extinction in spatially extended ecosystems of cyclically competing species, Chaos, 20, 045116, 1-8 (2010) · Zbl 1311.92166
[24] Ni, X.; Wang, W.; Lai, Y.; Grebogi, C., Cyclic competition of mobile species on continuous space: pattern formation and coexistence, Phys Rev E, 82, 066211, 1-8 (2010)
[25] Kuwamura, M., Turing instabilities in preypredator systems with dormancy of predators, J Math Biol, 71, 125-149 (2015) · Zbl 1334.35121
[26] Maionchi, D. O.; dos Reis, S. F.; de Aguiar, M. A.M., Chaos and pattern formation in a spatial tritrophic food chain, Ecol Model, 191, 291-303 (2006)
[27] Peng, R.; Shi, J.; Wang, M., Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J Appl Math, 67, 1479-1503 (2007) · Zbl 1210.35268
[28] Araújo, S. B.L.; de Aguiar, M. A.M., Stationary pattern of a ratio-dependent food chain model with diffusion, Phys Rev E, 75, 061908, 1-14 (2007)
[29] Wang, M., Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion, Physica D, 196, 172-192 (2004) · Zbl 1081.35025
[30] Ko, W.; Ahn, I., Analysis of ratio-dependent food chain model, J Math Anal Appl, 335, 498-523 (2007) · Zbl 1126.35078
[31] Yuan, S.; Xu, C.; Zhang, T., Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23, 033102, 1-10 (2013) · Zbl 1323.92197
[32] Zhang, X.; Sun, G.; Jin, Z., Spatial dynamics in a predator-prey model with beddington-deangelis functional response, Phys Rev E, 85, 021924, 1-14 (2012)
[33] Cruywagen, G. C.; Maini, P. K.; Murray, J. D., Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J Appl Math, 57, 1485-1509 (1997) · Zbl 0892.92003
[34] Gambino, G.; Lombardo, M. C.; Sammartino, M., Pattern formation driven by cross-diffusion in a 2d domain, Nonlinear Anal Real World Appl, 14, 1755-1779 (2013) · Zbl 1270.35088
[35] Zhang, T.; Xing, Y.; Zang, H.; Han, M., Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dyn, 78, 265-277 (2014)
[36] Qian, H.; Murray, J. D., A simple method of parameter space determination for diffusion-driven instability with three species, Appl Math Lett, 14, 405-411 (2001) · Zbl 0980.35062
[37] Satnoianu, R. A.; Menzinger, M.; Maini, P. K., Turing instabilities in general systems, J Math Biol, 41, 493-512 (2000) · Zbl 1002.92002
[38] Rosenzweig, M. L.; Arthur, R. H.M., Graphical representation and stability conditions of predator-prey interactions, Am Nat, 97, 209-223 (1963)
[39] Xu, C.; Li, Z., Populations response to environmental noise: the inuence of food web structure, Ecol Model, 154, 193-202 (2002)
[40] Northfield, T. D.; Barton, B. T.; Schmitz, O. J., A spatial theory for emergent multiple predatorprey interactions in food webs, Ecol Evol, 7, 6935-6948 (2017)
[41] Yang, T.; Zhang, W.; Cheng, K., Global dynamics of three species omnivory models with lotka-volterra interaction, Discret Contin Dyn Syst Ser-B, 21, 2867-2881 (2016) · Zbl 1351.37278
[42] Hsu, S.; Ruan, S.; Yang, T., Analysis of three species Lotka-Volterra food web models with omnivory, J Math Anal Appl, 426, 659-687 (2015) · Zbl 1333.92046
[43] Rosenzweig, M. L., Exploitation in three trophic levels, Am Nat, 107, 275-294 (1973)
[44] Muratori, S.; Rinaldi, S., Low- and high-frequency oscillations in three-dimensional food chain systems, SIAM J Appl Math, 52, 1688-1706 (1992) · Zbl 0774.92024
[45] Cann, K. M.; Yodzis, P., Biological conditions for chaos in a three-species food chain, Ecology, 75, 561-564 (1994)
[46] Rinaldi, S.; Feo, O. D., Top-predator abundance and chaos in tritrophic food chains, Ecol Lett, 2, 6-10 (1999)
[47] Deng, B.; Hines, G., Food chain chaos due to transcritical point, Chaos, 13, 578-585 (2003) · Zbl 1080.92519
[48] Deng, B., Food chain chaos with canard explosion, Chaos, 14, 1083-1093 (2004) · Zbl 1080.34043
[49] Boer, M. P.; Kooi, B. W.; Kooijman, S. A.L. M., Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain, J Math Biol, 39, 19-38 (1999) · Zbl 0926.92032
[50] Chiu, C.; Hsu, S., Extinction of top-predator in a three-level food-chain model, J Math Biol, 37, 372-380 (1998) · Zbl 0908.92029
[51] Duarte, J.; Januário, C.; Martins, N.; Sardanyés, J., Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach, Chaos, 19, 043102, 1-12 (2009)
[52] Can, K. M.; Yodzis, P., Bifurcation structure of a three-species food chain model, Theor Popul Biol, 48, 93-125 (1995) · Zbl 0854.92022
[53] Pao, C. V., Nonlinear parabolic and elliptic equations (1992), Plenum: Plenum New York · Zbl 0777.35001
[54] Cantrell, R. S.; Cosner, C.; Hutson, V., Permanence in ecological systems with spatial heterogeneity, Proc R Soc Edinburgh Sect A, 123, 533-559 (1993) · Zbl 0796.92026
[55] Alikakos, N. D., An application of the invariance principle to reaction-diffusion equations, J Differ Eq, 33, 201-225 (1979) · Zbl 0386.34046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.