×

Correlations of two-phase frictional pressure drop and void fraction in mini-channel. (English) Zbl 1180.80049

Summary: Alternative correlations of two-phase friction pressure drop and void fraction are explored for mini-channels based on the separated flow model and drift-flux model. By applying the artificial neural network, dominant parameters to correlate the two-phase friction multiplier and void fraction are picked out. It is found that in mini-channels the non-dimensional Laplace constant is a main parameter to correlate the Chisholm parameter as well as the distribution parameter. Both previous correlations and the newly developed correlations are extensively evaluated with a variety of data sets collected from the literature.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows
80M25 Other numerical methods (thermodynamics) (MSC2010)
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Mishima, K.; Hibiki, T.; Nishihara, H.: Some characteristics of gas – liquid flow in narrow rectangular ducts, Int. J. Multiphase flow 19, 115-124 (1993) · Zbl 1144.76423 · doi:10.1016/0301-9322(93)90027-R
[2] Mishima, K.; Hibiki, T.: Some characteristics of air – water two-phase flows in small diameter tubes, Int. J. Multiphase flow 22, 703-712 (1996) · Zbl 1135.76498 · doi:10.1016/0301-9322(96)00010-9
[3] Chisholm, D.: A theoretical basis for the lockhart – Martinelli correlation for two-phase flow, Int. J. Heat mass transfer 10, 1767-1778 (1967)
[4] Triplett, K. A.; Ghiaasiaan, S. M.; Abdel-Khalik, S. I.; Lemouel, A.; Mccord, B. N.: Gas – liquid two-phase flow in microchannels. Part II: Void fraction and pressure drop, Int. J. Multiphase flow 25, 395-410 (1999) · Zbl 1137.76762
[5] L. Friedel, Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, in: Proceedings of the European Two-Phase Flow Group Meeting, Ispra, Italy, 1979.
[6] T.N. Tran, Pressure drop and heat transfer study of two-phase flow in small channels, Ph.D. Dissertation, Texas Tech University, Lubbock, TX, 1998.
[7] Kawahara, A.; Chung, P. M. -Y.; Kawaji, M.: Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel, Int. J. Multiphase flow 28, 1411-1435 (2002) · Zbl 1137.76630 · doi:10.1016/S0301-9322(02)00037-X
[8] Kariyasaki, A.; Fukano, T.; Ousaka, A.; Kagawa, M.: Isothermal air – water two-phase up- and downward flows in a vertical capillary tube (first report, flow pattern and void fraction), Trans. JSME (Ser. B) 58, 2684-2690 (1992)
[9] Moriyama, K.; Inoue, A.; Ohira, H.: The thermohydraulic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and void fraction of adiabatic two-component two-phase flow), Trans. JSME (Ser. B) 58, 401-407 (1992)
[10] Bao, Z. Y.; Bosnick, M. G.; Haynes, B. S.: Estimation of void fraction and pressure drop for two-phase flow in fine passages, Trans. inst. Chem. eng. 72, 625-632 (1994)
[11] T. Hazuku, N. Tamura, N. Fukamachi, T. Takamasa, T. Hibiki, M. Ishii, Axial development of vertical upward bubbly flow in a mini-pipe, in: Proceedings of the 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, 2005.
[12] Zhang, W.; Hibiki, T.; Mishima, K.: Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat mass transfer 47, 5749-5763 (2004)
[13] Zhang, W.; Hibiki, T.; Mishima, K.; Mi, Y.: Correlation of critical heat flux for flow boiling of water in mini-channels, Int. J. Heat mass transfer 49, 1058-1072 (2006)
[14] Pao, Y. H.: Adaptive pattern recognition and neural networks, (1989) · Zbl 0748.68061
[15] Wasserman, P. D.: Neural computing: theory and practice, (1989)
[16] Su, G. H.; Fukuda, K.; Jia, D.; Morita, K.: Application of an artificial neural network in reactor thermo-hydraulic problem: prediction of critical heat flux, J. nucl. Sci. technol. 39, 564-571 (2002)
[17] Mi, Y.; Ishii, M.; Tsoukalas, L. H.: Flow regime identification methodology with neural networks and two-phase flow models, Nucl. eng. Des. 204, 87-100 (2001)
[18] Lockhart, R. W.; Martinelli, R. C.: Proposed correlation of data for isothermal two-phase two-component flow in pipes, Chem. eng. Prog. 45, 39-48 (1949)
[19] Zhang, M.; Webb, R. L.: Correlation of two-phase friction for refrigerants in small-diameter tubes, Exp. therm. Fluid sci. 25, 131-139 (2001)
[20] Hewitt, G. F.; Hall-Taylor, N.: Annular two-phase flow, (1970)
[21] Chisholm, D.; Laird, A. D. K.: Two-phase flow in rough tubes, Trans. ASME 80, 276-286 (1958)
[22] Zhao, T. S.; Bi, Q. C.: Pressure drop characteristics of gas – liquid two-phase flow in vertical miniature triangular channels, Int. J. Heat mass transfer 44, 2523-2534 (2001)
[23] Lee, H. J.; Lee, S. Y.: Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights, Int. J. Multiphase flow 27, 783-796 (2001) · Zbl 1137.76651 · doi:10.1016/S0301-9322(00)00050-1
[24] Chung, P. M. -Y.; Kawaji, M.: The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels, Int. J. Multiphase flow 30, 735-761 (2004) · Zbl 1136.76486 · doi:10.1016/j.ijmultiphaseflow.2004.05.002
[25] Sadatomi, Y.; Sato, T.; Saruwatari, S.: Two-phase flow in vertical noncircular channels, Int. J. Multiphase flow 8, 641-655 (1982)
[26] M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report ANL-77-47, 1977.
[27] T. Takamasa, T. Hazuku, N. Fukamachi, N. Tamura, T. Hibiki, M. Ishii, Experimental study on interfacial area transport of bubbly flow in mini-channels, in: Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, Paper No. 490, 2004.
[28] T. Hibiki, M. Ishii, One-dimensional drift-flux model for various flow conditions, in: Proceedings of the NURETH-11, Avignon, France, 2005, Paper No. 014. · Zbl 1189.76629
[29] Triplett, K. A.; Ghiaasiaan, S. M.; Abdel-Khalik, S. I.; Lemouel, A.; Mccord, B. N.: Gas – liquid two-phase flow in microchannels. Part I: Two-phase flow patterns, Int. J. Multiphase flow 25, 377-394 (1999) · Zbl 1137.76763 · doi:10.1016/S0301-9322(98)00054-8
[30] Hibiki, T.; Ishii, M.: Distribution parameter and drift velocity of drift-flux model in bubbly flow, Int. J. Heat mass transfer 45, 707-721 (2002) · Zbl 0991.76570 · doi:10.1016/S0017-9310(01)00195-8
[31] E.K. Ungar, J.D. Cornwell, Two-phase pressure drop of ammonia in small diameter horizontal tubes, in: Proceedings of the AIAA 17th Aerospace Ground Testing Conference, Nashville, TN, 1992.
[32] Cavallini, A.; Col, D. D.; Doretti, L.; Matkovic, M.; Rossetto, L.; Zilio, C.: Two-phase frictional pressure gradient of r236ea, r134a and R410A inside multi-port mini-channels, Exp. therm. Fluid sci. 29, 861-870 (2005)
[33] Yu, W.; France, D. M.; Wambsganss, M. W.; Hull, J. R.: Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, Int. J. Multiphase flow 28, 927-941 (2002) · Zbl 1136.76691 · doi:10.1016/S0301-9322(02)00019-8
[34] Kandlikar, S. G.: Fundamental issues related to flow boiling in minichannels and microchannels, Exp. therm. Fluid sci. 26, 389-407 (2002)
[35] Liu, H.; Vandu, C. O.; Krishna, R.: Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop, Ind. eng. Chem. res. 44, 4884-4897 (2005)
[36] Dukler, A. E.; Iii, M. Wicks; Cleveland, R. G.: Pressure drop and hold-up in two-phase flow, Aiche J. 10, 38-51 (1964)
[37] Beattie, D. R. H.; Whalley, P. B.: A simple two-phase flow frictional pressure drop calculation method, Int. J. Multiphase flow 8, 83-87 (1982)
[38] Akers, W. W.; Deans, H. A.; Crosser, O. K.: Condensation heat transfer within horizontal tubes, Chem. eng. Prog. symp. Ser. 55, 171-176 (1959)
[39] Qu, W.; Mudawar, I.: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks, Int. J. Heat mass transfer 46, 2737-2753 (2003)
[40] Lee, J.; Mudawar, I.: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications. Part I: Pressure drop characteristics, Int. J. Heat mass transfer 48, 928-940 (2005)
[41] Collier, J. G.; Thome, J. R.: Convective boiling and condensation, (1994)
[42] Serizawa, A.; Feng, Z.; Kawara, Z.: Two-phase flow in microchannels, Exp. therm. Fluid sci. 26, 703-714 (2002)
[43] Armand, A. A.: The resistance during the movement of a two-phase system in horizontal pipes, Izv. vses. Teplotekh. inst. 1, 16-23 (1946)
[44] Kawahara, A.; Sadatomi, M.; Okayama, K.; Kawaji, M.; Chung, P. M. -Y.: Effects of channel diameter and liquid properties on void fraction in adiabatic two-phase flow through microchannels, Heat transfer eng. 26, 13-19 (2005)
[45] Mcadams, W. H.: Heat transmission, (1942)
[46] Cicchitti, A.; Lombardi, C.; Silvestri, M.; Solddaini, G.; Zavalluilli, R.: Two-phase cooling experiments – pressure drop, heat transfer and burnout measurement, Energ. nucl. 7, 407-425 (1960)
[47] Lin, S.; Kwok, C. C. K.; Li, R. Y.; Chen, Z. H.; Chen, Z. Y.: Local frictional pressure drop during vaporization for R-12 through capillary tubes, Int. J. Multiphase flow 17, 95-102 (1991) · Zbl 1134.76596 · doi:10.1016/0301-9322(91)90072-B
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.