×

An equivariant quantum Pieri rule for the Grassmannian on cylindric shapes. (English) Zbl 1498.14137

Summary: The quantum cohomology ring of the Grassmannian is determined by the quantum Pieri rule for multiplying by Schubert classes indexed by row or column-shaped partitions. We provide a direct equivariant generalization of Postnikov’s quantum Pieri rule for the Grassmannian in terms of cylindric shapes, complementing related work of V. Gorbounov and C. Korff [Adv. Math. 313, 282–356 (2017; Zbl 1386.14181)] in quantum integrable systems. The equivariant terms in our Graham-positive rule simply encode the positions of all possible addable boxes within one cylindric skew diagram. As such, unlike the earlier equivariant quantum Pieri rule of Y. Huang and C. Li [J. Algebra 441, 21–56 (2015; Zbl 1349.14173)] and known equivariant quantum Littlewood-Richardson rules, our formula does not require any calculations in a different Grassmannian or two-step flag variety.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14N15 Classical problems, Schubert calculus
14M15 Grassmannians, Schubert varieties, flag manifolds

References:

[1] H. H. Andersen, J. C. Jantzen, and W. Soergel. Representations of quantum groups at apth root of unity and of semisimple groups in characteristicp: independence ofp.Ast´erisque, (220):321, 1994. · Zbl 0802.17009
[2] Dave Anderson. Introduction to equivariant cohomology in algebraic geometry. InContributions to algebraic geometry, EMS Ser. Congr. Rep., pages 71-92. Eur. Math. Soc., Z¨urich, 2012. · Zbl 1262.14019
[3] Aaron Bertram, Ionut¸ Ciocan-Fontanine, and William Fulton. Quantum multiplication of Schur polynomials.J. Algebra, 219(2):728-746, 1999. · Zbl 0936.05086
[4] Aaron Bertram. Quantum Schubert calculus.Adv. Math., 128(2):289-305, 1997. · Zbl 0945.14031
[5] Sara C. Billey. Kostant polynomials and the cohomology ring forG/B.Duke Math. J., 96(1):205-224, 1999. · Zbl 0980.22018
[6] Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis. Gromov-Witten invariants on Grassmannians.J. Amer. Math. Soc., 16(4):901-915, 2003. · Zbl 1063.53090
[7] Anders S. Buch and Leonardo C. Mihalcea. QuantumK-theory of Grassmannians.Duke Math. J., 156(3):501-538, 2011. · Zbl 1213.14103
[8] Anna Bertiger, Elizabeth Mili´cevi´c, and Kaisa Taipale. Equivariant quantum cohomology of the Grassmannian via the rim hook rule.Algebr. Comb., 1(3):327- 352, 2018. · Zbl 1476.14094
[9] Armand Borel.Seminar on transformation groups. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46. Princeton University Press, Princeton, N.J., 1960. · Zbl 0091.37202
[10] Anders Skovsted Buch. Quantum cohomology of Grassmannians.Compositio Math., 137(2):227-235, 2003. · Zbl 1050.14053
[11] Anders Skovsted Buch. Mutations of puzzles and equivariant cohomology of two-step flag varieties.Ann. of Math. (2), 182(1):173-220, 2015. · Zbl 1354.14072
[12] Henri Cartan. La transgression dans un groupe de Lie et dans un espace fibr´e principal. InColloque de topologie (espaces fibr´es), Bruxelles, 1950, pages 57-71. Georges Thone, Li‘ege; Masson & Cie, Paris, 1951. · Zbl 0045.30701
[13] Jonathan Cookmeyer and Elizabeth Mili´cevi´c. Applying parabolic Peterson: affine algebras and the quantum cohomology of the Grassmannian.J. Comb., 10(1):129-162, 2019. · Zbl 1439.14139
[14] Sergey Fomin and Anatol N. Kirillov. Quadratic algebras, Dunkl elements, and Schubert calculus. InAdvances in geometry, volume 172 ofProgr. Math., pages 147-182. Birkh¨auser Boston, Boston, MA, 1999. · Zbl 0940.05070
[15] William Fulton.Young tableaux, volume 35 ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. · Zbl 0878.14034
[16] Ira M. Gessel and C. Krattenthaler. Cylindric partitions.Trans. Amer. Math. Soc., 349(2):429-479, 1997. · Zbl 0865.05003
[17] Vassily Gorbounov and Christian Korff. Equivariant quantum cohomology and Yang-Baxter algebras.arXiv:1402.2907, 2014. · Zbl 1386.14181
[18] Vassily Gorbounov and Christian Korff. Quantum integrability and generalised quantum Schubert calculus.Adv. Math., 313:282-356, 2017. · Zbl 1386.14181
[19] Mark Goresky, Robert Kottwitz, and Robert MacPherson. Equivariant cohomology, Koszul duality, and the localization theorem.Invent. Math., 131(1):25-83, 1998. · Zbl 0897.22009
[20] William Graham. Positivity in equivariant Schubert calculus.Duke Math. J., 109(3):599-614, 2001. · Zbl 1069.14055
[21] V. Guillemin and C. Zara. Equivariant de Rham theory and graphs.Asian J. Math., 3(1):49-76, 1999. · Zbl 0971.58001
[22] Yongdong Huang and Changzheng Li. On equivariant quantum Schubert calculus forG/P.J. Algebra, 441:21-56, 2015. · Zbl 1349.14173
[23] Takeshi Ikeda and Hiroshi Naruse. Excited Young diagrams and equivariant Schubert calculus.Trans. Amer. Math. Soc., 361(10):5193-5221, 2009. · Zbl 1229.05287
[24] Bumsig Kim. On equivariant quantum cohomology.Internat. Math. Res. Notices, (17):841-851, 1996. · Zbl 0881.55007
[25] Bertram Kostant and Shrawan Kumar. The nil Hecke ring and cohomology of G/Pfor a Kac-Moody groupG.Adv. in Math., 62(3):187-237, 1986. · Zbl 0641.17008
[26] Allen Knutson, Thomas Lam, and David E. Speyer. Positroid varieties: juggling and geometry.Compos. Math., 149(10):1710-1752, 2013. · Zbl 1330.14086
[27] Christian Korff. Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra.Comm. Math. Phys., 318(1):173-246, 2013. · Zbl 1259.05186
[28] Victor Kreiman.Equivariant Littlewood-Richardson skew tableaux.Trans. Amer. Math. Soc., 362(5):2589-2617, 2010. · Zbl 1205.05244
[29] Christian Korff and Catharina Stroppel. Thesl(bn)k-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math., 225(1):200-268, 2010. · Zbl 1230.17010
[30] Allen Knutson and Terence Tao. Puzzles and (equivariant) cohomology of Grassmannians.Duke Math. J., 119(2):221-260, 2003. · Zbl 1064.14063
[31] Shrawan Kumar.Kac-Moody groups, their flag varieties and representation theory, volume 204 ofProgress in Mathematics. Birkh¨auser Boston, Inc., Boston, MA, 2002. · Zbl 1026.17030
[32] Thomas Lam. Affine Stanley symmetric functions.Amer. J. Math., 128(6):1553- 1586, 2006. · Zbl 1107.05095
[33] Seung Jin Lee. Positivity of cylindric skew Schur functions.J. Combin. Theory Ser. A, 168:26-49, 2019. · Zbl 1421.05008
[34] Changzheng Li and Vijay Ravikumar. Equivariant Pieri rules for isotropic Grassmannians.Math. Ann., 365(1-2):881-909, 2016. · Zbl 1339.14030
[35] V. Lakshmibai, K. N. Raghavan, and P. Sankaran. Equivariant Giambelli and determinantal restriction formulas for the Grassmannian.Pure Appl. Math. Q., 2(3, Special Issue: In honor of Robert D. MacPherson. Part 1):699-717, 2006. · Zbl 1105.14065
[36] Changzheng Li, Vijay Ravikumar, Frank Sottile, and Mingzhi Yang. A geometric proof of an equivariant Pieri rule for flag manifolds.Forum Math., 31(3):779-783, 2019. · Zbl 1427.14104
[37] Thomas Lam and Mark Shimozono. Quantum cohomology ofG/Pand homology of affine Grassmannian.Acta Math., 204(1):49-90, 2010. · Zbl 1216.14052
[38] Thomas Lam and Mark Shimozono. Equivariant Pieri rule for the homology of the affine Grassmannian.J. Algebraic Combin., 36(4):623-648, 2012. · Zbl 1267.14071
[39] Thomas Lam and Mark Shimozono.k-double Schur functions and equivariant (co)homology of the affine Grassmannian.Math. Ann., 356(4):1379-1404, 2013. · Zbl 1282.14092
[40] Peter McNamara. Cylindric skew Schur functions.Adv. Math., 205(1):275-312, 2006. · Zbl 1110.05099
[41] Leonardo Mihalcea.Equivariant quantum Schubert calculus.Adv. Math., 203(1):1-33, 2006. · Zbl 1100.14045
[42] Leonardo Constantin Mihalcea. Giambelli formulae for the equivariant quantum cohomology of the Grassmannian.Trans. Amer. Math. Soc., 360(5):2285-2301, 2008. · Zbl 1136.14046
[43] A. I. Molev. Littlewood-Richardson polynomials.J. Algebra, 321(11):3450-3468, 2009. · Zbl 1169.05050
[44] Dale Peterson. Quantum cohomology ofG/P. Lecture notes, Massachusetts Institute of Technology, Cambridge, MA, 1997.
[45] Alexander Postnikov. Affine approach to quantum Schubert calculus.Duke Math. J., 128(3):473-509, 2005. · Zbl 1081.14070
[46] Shawn Robinson. A Pieri-type formula forH∗T(SLn(C)/B).J. Algebra, 249(1):38- 58, 2002. · Zbl 1061.14060
[47] Takeshi Suzuki and Monica Vazirani. Tableaux on periodic skew diagrams and irreducible representations of the double affine Hecke algebra of type A.Int. Math. Res. Not., (27):1621-1656, 2005. · Zbl 1083.20003
[48] Hugh Thomas and Alexander Yong. Equivariant Schubert calculus and jeu de taquin.Ann. Inst. Fourier (Grenoble), 68(1):275-318, 2018. · Zbl 1400.05273
[49] Julianna Tymoczko. Billey’s formula in combinatorics, geometry, and topology. InSchubert calculus—Osaka 2012, volume 71 ofAdv. Stud. Pure Math., pages 499-518. Math. Soc. Japan, [Tokyo], 2016. · Zbl 1379.05125
[50] Julianna S. Tymoczko.An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson. InSnowbird lectures in algebraic geometry, volume 388 ofContemp. Math., pages 169-188. Amer. Math. Soc., Providence, RI, 2005.
[51] Hwanchul Yoo.Combinatorics in Schubert varieties and Specht modules. ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-Massachusetts Institute of Technology. · Zbl 1366.52025
[52] Paul Zinn-Justin. Littlewood-Richardson coefficients and integrable tilings.Electron. J. Combin., 16(1): #P1.12, 33, 2009 · Zbl 1184.05133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.