×

Index formulae for line bundle cohomology on complex surfaces. (English) Zbl 1537.14060

Summary: We conjecture and prove closed-form index expressions for the cohomology dimensions of line bundles on del Pezzo and Hirzebruch surfaces. Further, for all compact toric surfaces we provide a simple algorithm which allows expression of any line bundle cohomology in terms of an index. These formulae follow from general theorems we prove for a wider class of surfaces. In particular, we construct a map that takes any effective line bundle to a nef line bundle while preserving the zeroth cohomology dimension. For complex surfaces, these results explain the appearance of piecewise polynomial equations for cohomology and they are a first step towards understanding similar formulae recently obtained for Calabi-Yau three-folds.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

MSC:

14J30 \(3\)-folds
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
32Q25 Calabi-Yau theory (complex-analytic aspects)
32S25 Complex surface and hypersurface singularities
32J15 Compact complex surfaces
32J17 Compact complex \(3\)-folds
58J20 Index theory and related fixed-point theorems on manifolds
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] A.Constantin, A.Lukas, Formulae for Line Bundle Cohomology on Calabi‐Yau Threefolds, hep‐th/1808.09992.
[2] A.Constantin, Heterotic String Models on Smooth Calabi‐Yau Threefolds, PhD thesis, Oxford U., 2018. hep‐th/1808.09993.
[3] E. I.Buchbinder, A.Constantin, A.Lukas, JHEP2014, 1403, 025, hep‐th/1311.1941.
[4] D.Klaewer, L.Schlechter, Phys. Lett.2019, B789, 438, hep‐th/1809.02547.
[5] M.Larfors, R.Schneider, Line bundle cohomologies on CICYs with Picard number two, hep‐th/1906.00392.
[6] O.Zariski, Ann. of Math.1962, 76, 560. · Zbl 0124.37001
[7] S. D.Cutkosky, Duke Math. J.1986, 53, 149. · Zbl 0604.14002
[8] C. R.Brodie, A.Constantin, R.Deen, A.Lukas, Machine Learning Line Bundle Cohomology, hep‐th/1906.08730.
[9] C. R.Brodie, A.Constantin, R.Deen, A.Lukas, Topological Formulae for Line Bundle Cohomology on Surfaces, math.AG/1906.08363. · Zbl 1471.32022
[10] R.Lazarsfeld, Positivity in Algebraic Geometry, Springer, Berlin2004. · Zbl 1093.14500
[11] L. B.Anderson, Y.‐H.He, A.Lukas, JHEP2007, 07, 049, hep‐th/0702210.
[12] J.Gray, Y.‐H.He, A.Ilderton, A.Lukas, JHEP2007, 07, 023, hep‐th/0703249.
[13] L. B.Anderson, Y.‐H.He, A.Lukas, JHEP2008, 07, 104, hep‐th/0805.2875.
[14] Y.‐H.He, S.‐J.Lee, A.Lukas, JHEP2010, 05, 071, [0911.0865].
[15] L. B.Anderson, J.Gray, Y.‐H.He, A.Lukas, JHEP2010, 02, 054, hep‐th/0911.1569.
[16] R.Blumenhagen, B.Jurke, T.Rahn, H.Roschy, J. Math. Phys.2010, 51, 103525, hep‐th/1003.5217.
[17] T.Rahn, H.Roschy, J. Math. Phys.2010, 51, 103520, hep‐th/1006.2392.
[18] S.‐Y.Jow, Journal of Mathematical Physics2011, 52, 033506, hep‐th/1006.0780.
[19] R.Blumenhagen, V.Braun, T. W.Grimm, T.Weigand, Nucl. Phys.2009, B815, 1, hep‐th/0811.2936.
[20] R.Hartshorne, Algebraic Geometry, Springer Science+Business Media, Inc, New York2010. · Zbl 0532.14001
[21] P.Griffiths, J.Harris, Principles of Algebraic Geometry, Wiley Classics Library, Wiley, 2014.
[22] D.Cox, J.Little, H.Schenck, Toric Varieties, Graduate Studies in Mathematics, American Mathematical Soc., 2011. · Zbl 1223.14001
[23] L. B.Anderson, J.Gray, A.Lukas, B.Ovrut, JHEP2011, 10, 032, hep‐th/1107.5076.
[24] M.Demazure, Surfaces de Del Pezzo: II ‐ Éclaternpoints dans \(\mathbb{P}^2\), Séminaire sur les singularités des surfaces (1976-1977) 1-13.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.