×

\(L^2\) -cohomology on the coverings of a compact complex manifold. (French) Zbl 1066.32012

The aim of this paper is to define a natural \(L^2\)-cohomology on any unramified covering of a complex analytic space \(X\), with values in the lifting of any coherent analytic sheaf on \(X\). This \(L^2\) cohomology has been constructed independently by P. Eyssidieux [Math. Ann. 317, 527–566 (2000; Zbl 0964.32008)].
It is seen that the usual properties of sheaf cohomology such as cohomology exact sequences or spectral sequences hold in this \(L^2\)-cohomology on \(X\). If \(X\) is projective and non-singular there are \(L^2\) vanishing theorems analogous to those of Kodaira-Serre and Kawamata-Viehweg.
When \(X\) is compact it is possible to define the \(\Gamma\)-dimension for Galois coverings. This \(\Gamma\)-dimension turns out to be finite in this case. An extension of Atiyah’s index theorem is given in this context.

MSC:

32C35 Analytic sheaves and cohomology groups
32C99 Analytic spaces
32T99 Pseudoconvex domains
58J20 Index theory and related fixed-point theorems on manifolds

Citations:

Zbl 0964.32008
Full Text: DOI

References:

[1] [AG]Andreotti, A. etGrauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes,Bull. Soc. Math. France 90 (1962), 193–259.
[2] [AV]Andreotti, A. etVesentini, E., Carleman estimates for the Laplace-Beltrami equation in complex manifolds,Inst. Hautes Études Sci. Publ. Math 25 (1965), 81–130. · Zbl 0138.06604 · doi:10.1007/BF02684398
[3] [A]Atiyah, M., Elliptic operators, discrete groups and von Neumann algebras, dansElliptic Operators, Discrete Groups and von Neumann Algebras.Colloque ”Analyse et Topologie” en l’honneur de Henri Cartan (Orsay, 1974), Astérisque32–33, p. 43–72, Soc. Math. France, Paris, 1976.
[4] [C]Campana, F., Fundamental group and positivity of cotangent bundles of compact Kähler manifolds,J. Algebraic Geom. 4 (1995), 487–502. · Zbl 0845.32027
[5] [D]Demailly, J.-P.., EstimationsL 2 pour l’opérateur \(\bar \partial \) d’un fibré vectoriel hermitien semi-positif,Ann. Sci. École Norm. Sup. 15 (1982), 457–511.
[6] [E1]Eyssidieux, P., Théorie de l’adjonctionL 2 sur le revêtement universel, Preprint, 1997.
[7] [E2]Eyssidieux, P., Systèmes linéaires adjointsL 2.Ann. Inst. Fourier (Grenoble) 49 (1999),vi, ix-x, 141–176.
[8] [E3]Eyssidieux, P., Invariants de von Neumann des faisceaux analytiques cohérents,Math. Ann. 317 (2000), 527–566. · Zbl 0964.32008 · doi:10.1007/PL00004413
[9] [G]Gromov, M., Kähler hyperbolicity andL 2-Hodge theory,J. Differential Geom 33 (1991), 263–291. · Zbl 0719.53042
[10] [H]Hörmander, L.,An Introduction to Complex Analysis in Several Variables. 3rd ed., North-Holland Math. Library7, Elsevier, Amsterdam, 1990. · Zbl 0685.32001
[11] [JZ]Jost, J. etZuo, K., Vanishing theorems forL 2-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry,Comm. Anal. Geom. 8 (2000), 1–30.
[12] [K]Kollár, J.,Shafarevitch Maps and Automorphic Forms, Princeton Univ. Press, Princeton, N. J., 1995.
[13] [NR]Napier, T. etRamachandran, M.., The \(L^2 \bar \partial \) -method, weak Lefschetz theorems, and the topology of Kähler manifolds,J. Amer. Math. Soc. 11 (1998), 375–396. · Zbl 0897.32007 · doi:10.1090/S0894-0347-98-00257-4
[14] [O]Ohsawa, T., A reduction theorem for cohomology groups of very stronglyq-convex Kähler manifolds,Invent. Math. 63 (1981), 335–354; Invent. Math.66 (1982) 391–393. · Zbl 0457.32007 · doi:10.1007/BF01393882
[15] [P]Pansu, P., Introduction toL 2 Betti numbers, dansRiemannian Geometry (Waterloo, Ont., 1993) (Lovrić, M., Maung, M.-O. et Wang, M. Y.-K., éds) Fields Inst. Monogr.4, p. 53–86, Amer. Math. Soc., Providence, R. I., 1996.
[16] [W]Weil, A.,Introduction à l’étude des variétés kählériennes, Hermann, Paris, 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.