×

Optimizing at the end-points the Akima’s interpolation method of smooth curve fitting. (English) Zbl 1308.65031

Summary: We propose an optimized version, at the end-points, of the Akima’s interpolation method for experimental data fitting. Comparing with the Akima’s procedure, the error estimate, in terms of the modulus of continuity, is improved. Similarly, we optimize at the end points the Catmull-Rom’s cubic spline. The properties of the obtained splines are illustrated on a numerical experiment.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
65D05 Numerical interpolation
65D10 Numerical smoothing, curve fitting
Full Text: DOI

References:

[1] Ahlberg, J. H.; Nilson, E. H.; Walsh, J. L., The Theory of Splines and Their Applications (1967), Academic Press: Academic Press New York, London · Zbl 0158.15901
[2] Akima, H., A new method for interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mach., 4, 589-602 (1970) · Zbl 0209.46805
[3] Behforooz, G. H., A comparison of the \(E(3)\) and not-a-knot cubic splines, Appl. Math. Comput., 72, 219-223 (1995) · Zbl 0839.65007
[4] Behforooz, G. H.; Papamichael, N., Improved orders of approximation derived from interpolatory cubic splines, BIT, 19, 19-26 (1979) · Zbl 0407.65006
[5] Behforooz, G. H.; Papamichael, N., End conditions for cubic spline interpolation, J. Inst. Math. Appl., 23, 355-366 (1979) · Zbl 0407.65005
[6] Behforooz, G. H.; Papamichael, N., End conditions for interpolatory cubic splines with unequally spaced knots, J. Comput. Appl. Math., 6, 59-65 (1980) · Zbl 0436.41006
[7] Bica, A. M., Mathematical models in biology governed by differential equations (2004), “Babeş-Bolyai” University: “Babeş-Bolyai” University Cluj-Napoca, PhD thesis
[8] Bica, A. M., Fitting data using optimal Hermite type cubic interpolating splines, Appl. Math. Lett., 25, 2047-2051 (2012) · Zbl 1252.65033
[9] Bica, A. M.; Căuş, V. A.; Fechete, I.; Mureşan, S., Application of the Cauchy-Buniakovski-Schwarz’s inequality to an optimal property for cubic splines, J. Comput. Anal. Appl., 9, 43-53 (2007) · Zbl 1123.41006
[10] Burmeister, W.; Heß, W.; Schmidt, J. W., Convex splines interpolants with minimal curvature, Computing, 35, 219-229 (1985) · Zbl 0564.65005
[11] Catmull, E.; Rom, R., A class of local interpolating splines, (Barnhill, R. E.; Reisenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York), 317-326
[12] Conti, C.; Morandi, R., Piecewise \(C^1\)-shape-preserving Hermite interpolation, Computing, 56, 323-341 (1996) · Zbl 0871.65003
[13] De Rose, T. D.; Barsky, B. A., Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines, ACM Trans. Graph., 7, 1-41 (1988) · Zbl 0646.65010
[14] Dietze, S.; Schmidt, J. W., Determination of shape preserving spline interpolants with minimal curvature via dual programs, J. Approx. Theory, 52, 43-57 (1988) · Zbl 0662.41008
[15] Floater, M. S., On the deviation of a parametric cubic spline interpolant from its data polygon, Comput. Aided Geom. Des., 23, 148-156 (2008) · Zbl 1172.65312
[16] Iancu, C., On the cubic spline of interpolation, Semin. Funct. Anal. Num. Meth., 4, 52-71 (1981) · Zbl 0489.41012
[17] Ichida, K.; Yoshimoto, F.; Kiyono, T., Curve fitting by a piecewise cubic polynomial, Computing, 16, 329-338 (1976) · Zbl 0321.65010
[18] Kershaw, D., The orders of approximation of the first derivative of cubic splines at the knots, Math. Comput., 26, 191-198 (1972) · Zbl 0261.65012
[19] Knott, G. D., Interpolating Cubic Splines (2000), Birkhauser: Birkhauser Boston · Zbl 1057.41001
[20] Kobza, J., Cubic splines with minimal norm, Appl. Math., 47, 285-295 (2002) · Zbl 1090.65012
[21] Kochanek, D. H.U.; Bartels, R. H., Interpolating splines with local tension, continuity and bias control, ACM SIGGRAPH, 18, 3, 33-41 (1984)
[22] Micula, G.; Micula, S., Handbook of Splines, Mathematics and Its Applications, vol. 462 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0914.65003
[23] Papamichael, N.; Worsey, A. J., End conditions for improved cubic spline derivative approximations, J. Comput. Appl. Math., 7, 101-109 (1981) · Zbl 0471.41008
[24] Reimer, M., Best constants occurring with the modulus of continuity in the error estimate for spline interpolants of odd degree on equidistant grids, Numer. Math., 44, 407-415 (1984) · Zbl 0523.41009
[25] Wolberg, G.; Alfy, I., An energy-minimization framework for monotonic cubic spline interpolation, J. Comput. Appl. Math., 143, 145-188 (2002) · Zbl 1001.65012
[26] Yong, J.-H.; Cheng, F. F., Geometric curves with minimum strain energy, Comput. Aided Geom. Des., 21, 281-301 (2004) · Zbl 1069.65541
[27] Yuksel, C.; Schaefer, S.; Keyser, J., Parametrization and applications of Catmull-Rom curves, Comput. Aided Des., 43, 747-755 (2011)
[28] Zhang, C.; Zhang, P.; Cheng, F., Fairing spline curves and surfaces by minimizing energy, Comput. Aided Des., 33, 13, 913-923 (2001) · Zbl 1206.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.