×

On subdirect factors of a projective module and applications to system theory. (English) Zbl 1352.16003

Summary: We extend a result of D. N. Avelli and P. Rocha [Syst. Control Lett. 59, No. 3–4, 203–208 (2010; Zbl 1223.93020)] with a system-theoretic interpretation to the noncommutative case: Let \(P\) be a f.g. projective module over a two-sided Noetherian domain. If \(P\) admits a subdirect product structure of the form \(P\cong M\times_TN\) over a factor module \(T\) of grade at least 2 then the torsion-free factor of \(M\) (resp. \(N\)) is projective.

MSC:

16D40 Free, projective, and flat modules and ideals in associative algebras
93A10 General systems
93B25 Algebraic methods

Citations:

Zbl 1223.93020

Software:

OreModules; homalg

References:

[1] Auslander, M., & Bridger, M. (1969). Stable module theory. Memoirs of the American Mathematical Society, no. 94. Providence, RI: American Mathematical Society. · Zbl 0204.36402
[2] Auslander, M. (1966). Coherent functors. In Proceedings of the Conference on Categorical Algebra (La Jolla, CA, 1965) (pp. 189-231). New York: Springer. · Zbl 1223.93020
[3] Bruns, W., & Herzog, J. (1993). Cohen-Macaulay rings, Cambridge studies in advanced mathematics (Vol. 39). Cambridge: Cambridge University Press. · Zbl 0788.13005
[4] Barakat, M., & Lange-Hegermann, M. (2011). An axiomatic setup for algorithmic homological algebra and an alternative approach to localization. Journal of Algebra and its Applications, 10(2), 269-293. (arXiv:1003.1943). · Zbl 1227.18009
[5] Barakat, M., & Lange-Hegermann, M. (2013). Characterizing Serre quotients with no section functor and applications to coherent sheaves. Applied Categorical Structures. Published online (arXiv:1210.1425). · Zbl 1305.18054
[6] Chyzak, F., Quadrat, A., & Robertz, D. (2005). Effective algorithms for parametrizing linear control systems over Ore algebras. Applicable Algebra in Engineering, Communication and Computing, 16(5), 319-376. http://www-sop.inria.fr/members/Alban.Quadrat/PubsTemporaire/AAECC.pdf. · Zbl 1109.93018
[7] Chyzak, F., Quadrat, A., & Robertz, D. (2007). OreModules: a symbolic package for the study of multidimensional linear systems. Applications of time delay systems. Lecture notes in control and information science (Vol. 352, pp. 233-264). Berlin: Springer. http://wwwb.math.rwth-aachen.de/OreModules. · Zbl 1248.93006
[8] Eisenbud, D. (1995). Commutative algebra. Graduate texts in mathematics (Vol. 150). New York: Springer. With a view toward algebraic geometry. · Zbl 0819.13001
[9] Fliess, M. (1990). Some basic structural properties of generalized linear systems. Systems & Control Letters, 15(5), 391-396. · Zbl 0727.93024 · doi:10.1016/0167-6911(90)90062-Y
[10] Fröhler, S., & Oberst, U. (1998). Continuous time-varying linear systems. Systems & Control Letters, 35(2), 97-110. · Zbl 0909.93041 · doi:10.1016/S0167-6911(98)00041-3
[11] Hilton, P. J., & Stammbach, U. (1997). A course in homological algebra. Graduate texts in mathematics (2nd ed., Vol. 4). New York: Springer. · Zbl 0863.18001 · doi:10.1007/978-1-4419-8566-8
[12] Ishikawa, T. (1964). Faithfully exact functors and their applications to projective modules and injective modules. Nagoya Mathematical Journal, 24, 29-42. · Zbl 0178.34503
[13] Lam, T. Y. (1999). Lectures on modules and rings. Graduate texts in mathematics (Vol. 189). New York: Springer. · Zbl 0911.16001 · doi:10.1007/978-1-4612-0525-8
[14] Lam, T. Y. (2006). Serre’s problem on projective modules. Springer monographs in mathematics. Berlin: Springer. · doi:10.1007/978-3-540-34575-6
[15] Napp Avelli, D., & Rocha, P. (2010). Autonomous multidimensional systems and their implementation by behavioral control. Systems & Control Letters, 59(3-4), 203-208. · Zbl 1223.93020 · doi:10.1016/j.sysconle.2010.01.005
[16] Oberst, U. (1990). Multidimensional constant linear systems. Acta Applicandae Mathematica, 20(1-2), 1-175. · Zbl 0715.93014 · doi:10.1007/BF00046908
[17] Pommaret, J. F., & Quadrat, A. (1999). Algebraic analysis of linear multidimensional control systems. IMA Journal of Mathematical Control and Information, 16(3), 275-297. · Zbl 1158.93319 · doi:10.1093/imamci/16.3.275
[18] Robertz, D. (2006). Formal computational methods for control theory. Ph.D. thesis, RWTH Aachen, Germany, June 2006. This thesis is available at http://darwin.bth.rwth-aachen.de/opus/volltexte/2006/1586.
[19] Stenström, B. (1975). Rings of quotients. New York: Springer. Die Grundlehren der Mathematischen Wissenschaften, Band 217. An introduction to methods of ring theory. · Zbl 0296.16001
[20] The homalg project authors. (2003-2013). The homalg project—algorithmic homological algebra. http://homalg.math.rwth-aachen.de/. · Zbl 1106.93019
[21] Zerz, E. (2006). An algebraic analysis approach to linear time-varying systems. IMA Journal of Mathematical Control and Information, 23(1), 113-126. · Zbl 1106.93019 · doi:10.1093/imamci/dni047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.