×

Matrix bispectrality and noncommutative algebras: beyond the prolate spheroidals. (English) Zbl 1543.81134

Summary: The bispectral problem is motivated by an effort to understand and extend a remarkable phenomenon in Fourier analysis on the real line: the operator of time-and-band limiting is an integral operator admitting a second-order differential operator with a simple spectrum in its commutator. In this article, we discuss a noncommutative version of the bispectral problem, obtained by allowing all objects in the original formulation to be matrix-valued. Deep attention is given to bispectral algebras and their presentations as a tool to get information about bispectral triples.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
35C08 Soliton solutions
15A30 Algebraic systems of matrices
47A10 Spectrum, resolvent
13N10 Commutative rings of differential operators and their modules
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Studies in Appl. Math. 53 (1974), no. 4, 249-315. Zbl 0408.35068 MR 450815 · Zbl 0408.35068
[2] B. Bakalov, E. Horozov and M. Yakimov, General methods for constructing bispectral operators. Phys. Lett. A 222 (1996), no. 1-2, 59-66. Zbl 0972.37545 MR 1410230 · Zbl 0972.37545
[3] -Bispectral algebras of commuting ordinary differential operators. Comm. Math. Phys. 190 (1997), no. 2, 331-373. Zbl 0912.34065 MR 1489575 · Zbl 0912.34065
[4] -Automorphisms of the Weyl algebra and bispectral operators. In The bispectral prob-lem (Montreal, PQ, 1997), pp. 3-10, CRM Proc. Lecture Notes 14, Amer. Math. Soc., Providence, RI, 1998. Zbl 0983.37079 MR 1611019 · Zbl 0983.37079
[5] -Highest weight modules over the W 1C1 algebra and the bispectral problem. Duke Math. J. 93 (1998), no. 1, 41-72. Zbl 0983.17015 MR 1620079 · Zbl 0983.17015
[6] Yu. Yu. Berest and A. P. Veselov, The Huygens principle and integrability. Uspekhi Mat. Nauk 49 (1994), no. 6(300), 7-78. Zbl 0941.35003 MR 1316866
[7] M. Bergvelt, M. Gekhtman and A. Kasman, Spin Calogero particles and bispectral solutions of the matrix KP hierarchy. Math. Phys. Anal. Geom. 12 (2009), no. 2, 181-200. Zbl 1186.37072 MR 2497322 · Zbl 1186.37072
[8] C. Boyallian and J. I. Liberati, Matrix-valued bispectral operators and quasidetermi-nants. J. Phys. A 41 (2008), no. 36, Paper No. 365209. Zbl 1169.47035 MR 2447873 · Zbl 1169.47035
[9] W. R. Casper, Elementary examples of solutions to Bochner’s problem for matrix differ-ential operators. J. Approx. Theory 229 (2018), 36-71. Zbl 06859910 MR 3785460 · Zbl 06859910
[10] W. R. Casper, F. A. Grünbaum, M. Yakimov and I. Zurrián, Reflective prolate-spheroidal operators and the KP/KdV equations. Proc. Natl. Acad. Sci. USA 116 (2019), no. 37, 18310-18315. Zbl 1462.35330 MR 4224673 · Zbl 1462.35330
[11] -Algebras of differential operators for kernels of Airy type. In preparation, 2021.
[12] -Reflective prolate-spheroidal operators and the adelic Grassmannian. 2020, arXiv:2003.11616, to appear in Comm. Pure Appl. Math.
[13] W. R. Casper and M. T. Yakimov, Integral operators, bispectrality and growth of Fourier algebras. J. Reine Angew. Math. 766 (2020), 151-194. Zbl 07244600 MR 4145206 · Zbl 1540.47069
[14] M. Castro and F. A. Grünbaum, The algebra of differential operators associated to a family of matrix-valued orthogonal polynomials: five instructive examples. Int. Math. Res. Not. (2006), Paper No. 47602. Zbl 1130.33004 MR 2219221 · Zbl 1130.33004
[15] -Time-and-band limiting for matrix orthogonal polynomials of Jacobi type. Random Matrices Theory Appl. 6 (2017), no. 4, Paper No. 1740001. Zbl 1376.33010 MR 3717516 · Zbl 1376.33010
[16] F. A. C. C. Chalub and J. P. Zubelli, On Huygens’ principle for Dirac operators and nonlinear evolution equations. J. Nonlinear Math. Phys. 8 (2001), 62-68. Zbl 0977.35112 MR 1821510 · Zbl 0977.35112
[17] -Matrix bispectrality and Huygens’ principle for Dirac operators. In Partial differential equations and inverse problems, pp. 89-112, Contemp. Math. 362, Amer. Math. Soc., Providence, RI, 2004. Zbl 1072.58010 MR 2091493 · Zbl 1072.58010
[18] -Huygens’ principle, Dirac operators, and rational solutions of the AKNS hierarchy. Math. Phys. Anal. Geom. 8 (2005), no. 3, 187-210. Zbl 1088.37035 MR 2177466 · Zbl 1088.37035
[19] -Huygens’ principle for hyperbolic operators and integrable hierarchies. Phys. D 213 (2006), no. 2, 231-245. Zbl 1091.35077 MR 2201201 · Zbl 1091.35077
[20] A. Connes, Prolate spheroidal functions and zeta. 2021, https://www.youtube.com/watch? v=d8LgqGApvlo
[21] A. Connes and C. Consani, Spectral triples and -cycles. Enseign. Math. (2) 69 (2023), no. 1-2, 93-148. · Zbl 1537.11121
[22] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives. Amer. Math. Soc. Colloq. Publ. 55, Amer. Math. Soc., Providence, RI; Hindustan Book Agency, New Delhi, 2008. Zbl 1209.58007 MR 2371808 · Zbl 1159.58004
[23] A. Connes and H. Moscovici, Prolate spheroidal operator and zeta. 2021, arXiv:2112.05500 · Zbl 0534.43005
[24] J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter. Comm. Math. Phys. 103 (1986), no. 2, 177-240. Zbl 0625.34007 MR 826863 · Zbl 0625.34007
[25] A. J. Durán and M. D. de la Iglesia, Second-order differential operators having several families of orthogonal matrix polynomials as eigenfunctions. Int. Math. Res. Not. IMRN (2008), Paper No. rnn 084. Zbl 1152.33006 MR 2439550 · Zbl 1152.33006
[26] F. A. Grünbaum, B. D. Vasquez and J. P. Zubelli 348
[27] A. J. Durán and F. A. Grünbaum, Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. (2004), no. 10, 461-484. Zbl 1073.33009 MR 2039133 · Zbl 1073.33009
[28] -Matrix orthogonal polynomials satisfying second-order differential equations: coping without help from group representation theory. J. Approx. Theory 148 (2007), no. 1, 35-48. Zbl 1221.42046 MR 2356574 · Zbl 1221.42046
[29] J. Geiger, E. Horozov and M. Yakimov, Noncommutative bispectral Darboux transfor-mations. Trans. Amer. Math. Soc. 369 (2017), no. 8, 5889-5919. Zbl 1368.37080 MR 3646783 · Zbl 1368.37080
[30] F. A. Grünbaum, Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions. SIAM J. Algebraic Discrete Methods 2 (1981), no. 2, 136-141. Zbl 0519.47019 MR 616056 · Zbl 0519.47019
[31] -The bispectral problem: An overview. In Special functions 2000: current perspective and future directions (Tempe, AZ), pp. 129-140, NATO Sci. Ser. II Math. Phys. Chem. 30, Kluwer Acad. Publ., Dordrecht, 2001. Zbl 0999.47018 MR 2006287 · Zbl 0999.47018
[32] -Some noncommutative matrix algebras arising in the bispectral problem. SIGMA 10 (2014), Paper No. 078. · Zbl 1353.34104
[33] -Commuting integral and differential operators and the master symmetries of the Korteweg-de Vries equation. Inverse Probl. 37 (2021), no. 8, Paper No. 085010. · Zbl 07375642
[34] F. A. Grünbaum and L. Haine, Associated polynomials, spectral matrices and the bispectral problem. Methods Appl. Anal. 6 (1999), no. 2, 209-224. Zbl 0956.33007 MR 1803891 · Zbl 0956.33007
[35] F. A. Grünbaum, L. Haine and E. Horozov, On the Krall-Hermite and the Krall-Bessel polynomials. Internat. Math. Res. Notices (1997), no. 19, 953-966. Zbl 0910.33004 MR 1488346 · Zbl 0910.33004
[36] -Some functions that generalize the Krall-Laguerre polynomials. J. Comput. Appl. Math. 106 (1999), no. 2, 271-297. Zbl 0926.33007 MR 1696411 · Zbl 0926.33007
[37] F. A. Grünbaum and P. Iliev, A noncommutative version of the bispectral problem. J. Comput. Appl. Math. 161 (2003), no. 1, 99-118. Zbl 1038.39012 MR 2018577 · Zbl 1038.39012
[38] F. A. Grünbaum, L. Longhi and M. Perlstadt, Differential operators commuting with finite convolution integral operators: Some nonabelian examples. SIAM J. Appl. Math. 42 (1982), no. 5, 941-955. Zbl 0497.22012 MR 673519 · Zbl 0497.22012
[39] F. A. Grünbaum, I. Pacharoni and J. Tirao, A matrix-valued solution to Bochner’s problem. J. Phys. A, Math. Gen. 34 (2001), no. 48, 10647-10656. Zbl 0990.22012 MR 1877484 · Zbl 0990.22012
[40] -Matrix valued spherical functions associated to the complex projective plane. J. Funct. Anal. 188 (2002), no. 2, 350-441. Zbl 0996.43013 MR 1883412 · Zbl 0996.43013
[41] -Matrix valued spherical functions associated to the three dimensional hyperbolic space. Internat. J. Math. 13 (2002), no. 7, 727-784. Zbl 1048.22005 MR 1921509 · Zbl 1048.22005
[42] Matrix bispectrality and noncommutative algebras 349
[43] -Matrix valued orthogonal polynomials of the Jacobi type. Indag. Math. (N.S.) 14 (2003), no. 3-4, 353-366. Zbl 1070.33011 MR 2083080 · Zbl 1070.33011
[44] -An invitation to matrix-valued spherical functions: linearization of products in the case of complex projective space P 2 .C/. In Modern signal processing, pp. 147-160, Math. Sci. Res. Inst. Publ. 46, Cambridge Univ. Press, Cambridge, 2004. Zbl 1075.33004 MR 2075953 · Zbl 1075.33004
[45] -Matrix valued orthogonal polynomials of Jacobi type: the role of group representation theory. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 2051-2068. Zbl 1082.33006 MR 2187945 · Zbl 1082.33006
[46] F. A. Grünbaum, I. Pacharoni and I. Zurrián, Time and band limiting for matrix valued functions: an integral and a commuting differential operator. Inverse Probl. 33 (2017), no. 2, Paper No. 025005. Zbl 1367.47078 MR 3626797 · Zbl 1367.47078
[47] F. A. Grünbaum and J. Tirao, The algebra of differential operators associated to a weight matrix. Integral Equations Oper. Theory 58 (2007), no. 4, 449-475. Zbl 1120.33008 MR 2329130 · Zbl 1120.33008
[48] F. A. Grünbaum, L. Vinet and A. Zhedanov, Algebraic Heun operator and band-time limiting. Comm. Math. Phys. 364 (2018), no. 3, 1041-1068. Zbl 1405.33025 MR 3875822 · Zbl 1405.33025
[49] F. A. Grünbaum and M. Yakimov, Discrete bispectral Darboux transformations from Jacobi operators. Pacific J. Math. 204 (2002), no. 2, 395-431. Zbl 1051.39020 MR 1907898 · Zbl 1051.39020
[50] L. Haine, The Bochner-Krall problem: some new perspectives. In Special functions 2000: current perspective and future directions (Tempe, AZ), pp. 141-178, NATO Sci. Ser. II Math. Phys. Chem. 30, Kluwer Acad. Publ., Dordrecht, 2001. Zbl 1001.33006 MR 2006288 · Zbl 1001.33006
[51] A. Kasman, Bispectrality of N -component KP wave functions: A study in non-commutativity. SIGMA 11 (2015), Paper No. 087. Zbl 1337.37054 MR 3417188 · Zbl 1337.37054
[52] A. Kasman and M. Rothstein, Bispectral Darboux transformations: The generalized Airy case. Phys. D 102 (1997), no. 3-4, 159-176. Zbl 0890.58095 MR 1439683 · Zbl 0890.58095
[53] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell System Tech. J. 40 (1961), 65-84. Zbl 0184.08602 MR 140733 · Zbl 0184.08602
[54] -Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time-and band-limited signals. Bell System Tech. J. 41 (1962), 1295-1336. Zbl 0184.08603 MR 147686 · Zbl 0184.08603
[55] L. Miranian, Matrix-valued orthogonal polynomials on the real line: Some extensions of the classical theory. J. Phys. A 38 (2005), no. 25, 5731-5749. Zbl 1080.33009 MR 2168386 · Zbl 1080.33009
[56] A. Osipov, V. Rokhlin and H. Xiao, Prolate spheroidal wave functions of order zero. Appl. Math. Sci. 187, Springer, New York, 2013. Zbl 1287.65015 MR 3136430 · Zbl 1287.65015
[57] F. A. Grünbaum, B. D. Vasquez and J. P. Zubelli 350
[58] R. K. Perline, Discrete time-band limiting operators and commuting tridiagonal matrices. SIAM J. Algebraic Discrete Methods 8 (1987), no. 2, 192-195. Zbl 0616.33010 MR 881179 · Zbl 0616.33010
[59] M. Perlstadt, A property of orthogonal polynomial families with polynomial duals. SIAM J. Math. Anal. 15 (1984), no. 5, 1043-1054. Zbl 0551.42008 MR 755864 · Zbl 0551.42008
[60] M. Reach, Generating difference equations with the Darboux transformation. Comm. Math. Phys. 119 (1988), no. 3, 385-402. Zbl 0697.39005 MR 969208 · Zbl 0697.39005
[61] A. Sakhnovich and J. P. Zubelli, Bundle bispectrality for matrix differential equations. Integral Equations Oper. Theory 41 (2001), no. 4, 472-496. Zbl 1091.34048 MR 1857803 · Zbl 1091.34048
[62] D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainty. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43 (1964), 3009-3057. Zbl 0184.08604 MR 181766 · Zbl 0184.08604
[63] -On bandwidth. Proc. IEEE 64 (1976), no. 3, 292-300. MR 0462765
[64] -Prolate spheroidal wave functions, Fourier analysis and uncertainty. V. The discrete case. Bell System Tech. J. 57 (1978), 1371-1430. Zbl 0378.33006 · Zbl 0378.33006
[65] -Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25 (1983), no. 3, 379-393. Zbl 0571.94004 MR 710468 · Zbl 0571.94004
[66] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J. 40 (1961), 43-63. Zbl 0184.08601 MR 140732 · Zbl 0184.08601
[67] J. Tirao, The algebra of differential operators associated to a weight matrix: A first example. In Groups, algebras and applications, pp. 291-324, Contemp. Math. 537, Amer. Math. Soc., Providence, RI, 2011. Zbl 1225.33011 MR 2799107 · Zbl 1225.33011
[68] C. A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163 (1994), no. 1, 33-72. Zbl 0813.35110 MR 1277933 · Zbl 0813.35110
[69] -Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994), no. 1, 151-174. Zbl 0789.35152 MR 1257246 · Zbl 0789.35152
[70] B. D. Vasquez Campos and J. P. Zubelli, Matrix bispectrality of full rank one algebras. Phys. D 438 (2022), Paper No. 133358. Zbl 07548993 MR 4434523 · Zbl 1507.81113
[71] G. Wilson, Bispectral commutative ordinary differential operators. J. Reine Angew. Math. 442 (1993), 177-204. Zbl 0781.34051 MR 1234841 · Zbl 0781.34051
[72] -Collisions of Calogero-Moser particles and an adelic Grassmannian. Invent. Math. 133 (1998), no. 1, 1-41. Zbl 0906.35089 MR 1626461 · Zbl 0906.35089
[73] J. P. Zubelli, Differential equations in the spectral parameter for matrix differential operators. Phys. D 43 (1990), no. 2-3, 269-287. Zbl 0706.34070 MR 1067913 · Zbl 0706.34070
[74] -On a zero curvature problem related to the ZS-AKNS operator. J. Math. Phys. 33 (1992), no. 11, 3666-3675. Zbl 0762.35072 MR 1185840 · Zbl 0762.35072
[75] -Rational solutions of nonlinear evolution equations, vertex operators, and bispectrality. J. Differ. Equations 97 (1992), no. 1, 71-98. Zbl 0761.35099 MR 1161312 · Zbl 0761.35099
[76] J. P. Zubelli and F. Magri, Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV. Comm. Math. Phys. 141 (1991), no. 2, 329-351. Zbl 0743.35072 MR 1133270 · Zbl 0743.35072
[77] J. P. Zubelli and D. S. Valerio Silva, Rational solutions of the master symmetries of the KdV equation. Comm. Math. Phys. 211 (2000), no. 1, 85-109. Zbl 0956.37051 MR 1757007 · Zbl 0956.37051
[78] I. Zurrián, The algebra of differential operators for a matrix weight: An ultraspherical example. Int. Math. Res. Not. IMRN (2017), no. 8, 2402-2430. Zbl 1405.16033 MR 3658202 (Reçu le 15 décembre 2021) · Zbl 1405.16033
[79] F. Alberto Grünbaum, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA; e-mail: grunbaum@math.berkeley.edu
[80] Brian D. Vasquez, Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina, 110, Jardim Botânico, CEP 22460-320, Rio de Janeiro, Brazil; e-mail: bridava927@gmail.com
[81] Jorge P. Zubelli, Department of Mathematics, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates; e-mail: zubelli@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.