×

Bayesian estimation of incompletely observed diffusions. (English) Zbl 1500.60051

Summary: We present a general framework for Bayesian estimation of incompletely observed multivariate diffusion processes. Observations are assumed to be discrete in time, noisy and incomplete. We assume the drift and diffusion coefficient depend on an unknown parameter. A data-augmentation algorithm for drawing from the posterior distribution is presented which is based on simulating diffusion bridges conditional on a noisy incomplete observation at an intermediate time. The dynamics of such filtered bridges are derived and it is shown how these can be simulated using a generalised version of the guided proposals introduced in [M. Schauer et al., Bernoulli 23, No. 4A, 2917–2950 (2017; Zbl 1415.65022)].

MSC:

60J60 Diffusion processes
62F15 Bayesian inference

Citations:

Zbl 1415.65022

References:

[1] Amendinger, J.; Imkeller, P.; Schweizer, M., Additional logarithmic utility of an insider, Stochastic Process. Appl., 75, 2, 263-286 (1998) · Zbl 0934.91020
[2] Baudoin, F., Conditioned stochastic differential equations: Theory, examples and application to finance, Stochastic Process. Appl., 100, 1-2, 109-145 (2002) · Zbl 1058.60040
[3] Beskos, A.; Papaspiliopoulos, O.; Roberts, G. O.; Fearnhead, P., Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes, J. R. Stat. Soc. Ser. B Stat. Methodol, 68, 3, 333-382 (2006) · Zbl 1100.62079
[4] Beskos, A.; Roberts, G.; Stuart, A.; Voss, J., MCMC methods for diffusion bridges, Stoch. Dyn., 8, 3, 319-350 (2008) · Zbl 1159.65007
[5] Bladt, M.; Sørensen, M., Simple simulation of diffusion bridges with application to likelihood inference for diffusions, Bernoulli, 20, 2, 645-675 (2014) · Zbl 1398.60086
[6] Chib, S.; Pitt, M. K.; Shephard, N., Economics Papers 2004-W20, Likelihood based inference for diffusion driven models, Economics Group, Nuffield College, University of Oxford
[7] Delyon, B.; Hu, Y., Simulation of conditioned diffusion and application to parameter estimation, Stochastic Process. Appl., 116, 11, 1660-1675 (2006) · Zbl 1107.60046
[8] Durham, G. B.; Gallant, A. R., Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes, J. Bus. Econom. Statist, 20, 3, 297-338 (2002)
[9] Elerian, O.; Chib, S.; Shephard, N., Likelihood inference for discretely observed nonlinear diffusions, Econometrica, 69, 4, 959-993 (2001) · Zbl 1017.62068
[10] Eraker, B., MCMC analysis of diffusion models with application to finance, J. Bus. Econom. Statist., 19, 2, 177-191 (2001)
[11] Fuchs, C., Inference for Diffusion Processes (2013), Springer: Springer, Heidelberg · Zbl 1276.62051
[12] Golightly, A.; Wilkinson, D. J., Bayesian inference for nonlinear multivariate diffusion models observed with error, Comput. Statist. Data Anal., 52, 3, 1674-1693 (2008) · Zbl 1452.62603
[13] Golightly, A.; Wilkinson, D. J., ch. Markov chain Monte Carlo algorithms for SDE parameter estimation, Learning and inference in computational systems biology, 253-276 (2010), MIT Press
[14] Jacod, J.; Jeulin, T.; Yor, M., Grossissements de filtrations: Exemples et applications, 1118, Grossissement initial, hypothèse (H’), et théorème de Girsanov (1985), Springer-Verlag: Springer-Verlag, Berlin
[15] Jensen, A. C., Statistical inference for partially observed diffusion processes, University of Copenhagen
[16] Jeulin, T., Lecture Notes in Mathematics, 833, Semi-martingales et grossissement d’une filtration (1980), Springer: Springer, Berlin · Zbl 0444.60002
[17] Kallenberg, O., Probability and its Applications (New York), Foundations of modern probability (2002), Springer-Verlag: Springer-Verlag, New York · Zbl 0996.60001
[18] Lin, M.; Chen, R.; Mykland, P., On generating Monte Carlo samples of continuous diffusion bridges, J. Amer. Statist. Assoc., 105, 490, 820-838 (2010) · Zbl 1392.60068
[19] Liptser, R. S.; Shiryaev, A. N., Applications of Mathematics (New York), 5, Statistics of random processes. I (2001), Springer-Verlag: Springer-Verlag, Berlin · Zbl 1008.62072
[20] Marchand, J. L., Conditionnement de processus markoviens, IRMAR, Université de Rennes 1
[21] Papaspiliopoulos, O.; Roberts, G. O.; Stramer, O., Data augmentation for diffusions, J. Comput. Graph. Statist., 22, 3, 665-688 (2013)
[22] Revuz, D.; Yor, M., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Continuous martingales and Brownian motion (1991), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0731.60002
[23] Papaspiliopoulos, O.; Roberts, G. O., Statistical Methods for Stochastic Differential Equations, Importance sampling techniques for estimation of diffusion models, 311-337 (2012), Chapman and Hall
[24] Roberts, G. O.; Stramer, O., On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm, Biometrika, 88, 3, 603-621 (2001) · Zbl 0985.62066
[25] Schauer, M.; van der Meulen, F.; van Zanten, H., Guided proposals for simulating multi-dimensional diffusion bridges, Bernoulli, 23, 4, 2917-2950 (2017) · Zbl 1415.65022
[26] Stuart, A. M.; Voss, J.; Wiberg, P., Fast communication conditional path sampling of SDEs and the Langevin MCMC method, Commun. Math. Sci., 2, 4, 685-697 (2004) · Zbl 1082.65004
[27] van der Meulen, F.; Schauer, M., Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals, Electron. J. Statist, 11, 1, 2358-2396 (2017) · Zbl 1378.62050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.