×

Cone fields and topological sampling in manifolds with bounded curvature. (English) Zbl 1358.68307

Summary: A standard reconstruction problem is how to discover a compact set from a noisy point cloud that approximates it. A finite point cloud is a compact set. This paper proves a reconstruction theorem which gives a sufficient condition, as a bound on the Hausdorff distance between two compact sets, for when certain offsets of these two sets are homotopic in terms of the absence of \(\mu \)-critical points in an annular region. We reduce the problem of reconstructing a subset from a point cloud to the existence of a deformation retraction from the offset of the subset to the subset itself. The ambient space can be any Riemannian manifold but we focus on ambient manifolds which have nowhere negative curvature (this includes Euclidean space). We get an improvement on previous bounds for the case where the ambient space is Euclidean whenever \(\mu \leq 0.945\) (\(\mu \in (0,1)\) by definition). In the process, we prove stability theorems for \(\mu \)-critical points when the ambient space is a manifold.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
53B20 Local Riemannian geometry
55S40 Sectioning fiber spaces and bundles in algebraic topology

References:

[1] Amenta, N.; Choi, S.; Dey, T. K.; Leekha, N., A simple algorithm for homeomorphic surface reconstruction, 213-222 (2000), New York · Zbl 1374.68636 · doi:10.1145/336154.336207
[2] D. Attali, A. Lieutier, D. Salinas, Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes, Comput. Geom. (2012). · Zbl 1283.68341
[3] Bissacco, A.; Saisan, P.; Soatto, S., Gait recognition using dynamic affine invariants, Citeseer
[4] G. Carlsson, Topology and data, Bull. Am. Math. Soc.46(2), 255-308 (2009). · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[5] Chang, J. M.; Kirby, M.; Kley, H.; Peterson, C.; Draper, B.; Beveridge, J., Recognition of digital images of the human face at ultra low resolution via illumination spaces, 733-743 (2007) · doi:10.1007/978-3-540-76390-1_72
[6] Chazal, F.; Oudot, S. Y., Towards persistence-based reconstruction in Euclidean spaces, 232-241 (2008), New York · Zbl 1271.57058 · doi:10.1145/1377676.1377719
[7] F. Chazal, D. Cohen-Steiner, A. Lieutier, A sampling theory for compact sets in Euclidean space, Discrete Comput. Geom.41(3), 461-479 (2009). · Zbl 1165.68061 · doi:10.1007/s00454-009-9144-8
[8] J. Cheeger, D.G. Ebin, American Mathematical Society, Comparison Theorems in Riemannian Geometry (1975). AMS Chelsea Publishing. · Zbl 0309.53035
[9] Dey, T. K.; Li, K.; Ramos, E. A.; Wenger, R., Isotopic reconstruction of surfaces with boundaries, No. 28, 1371-1382 (2009) · Zbl 1168.81411
[10] G. Doretto, A. Chiuso, Y.N. Wu, S. Soatto, Dynamic textures, Int. J. Comput. Vis.51(2), 91-109 (2003). · Zbl 1030.68646 · doi:10.1023/A:1021669406132
[11] Edelsbrunner, H.; Mücke, E. P., Three-dimensional alpha shapes, 75-82 (1992), New York · doi:10.1145/147130.147153
[12] J.H.G. Fu, Tubular neighborhoods in Euclidean spaces, Duke Math. J.52(4), 1025-1046 (1985). · Zbl 0592.52002 · doi:10.1215/S0012-7094-85-05254-8
[13] R. Ghrist, Barcodes: the persistent topology of data, Bull. Am. Math. Soc.45(1), 61-75 (2008). · Zbl 1391.55005 · doi:10.1090/S0273-0979-07-01191-3
[14] Grove, K., Critical point theory for distance functions, No. 54 (1993) · Zbl 0806.53043
[15] M.C. Irwin, Smooth Dynamical Systems. Pure and Applied Mathematics (Academic Press, San Diego, 1980). · Zbl 0465.58001
[16] J.M. Lee, Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics (Springer, Berlin, 1997). · Zbl 0905.53001
[17] Lieutier, A., Any open bounded subset of \(\mathbb{R}^n\) has the same homotopy type than its medial axis, 65-75 (2003), New York · doi:10.1145/781606.781620
[18] A. Lytchak, Open map theorem for metric spaces, Algebra Anal.17(3), 139-159 (2005). · Zbl 1152.53033
[19] P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom.39(1-3), 419-441 (2008). · Zbl 1148.68048 · doi:10.1007/s00454-008-9053-2
[20] Patrangenaru, V.; Mardia, K. V., Affine shape analysis and image analysis, Dept. of Statistics, University of Leeds
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.