×

Asymptotic models and inference for extremes of spatio-temporal data. (English) Zbl 1226.60083

Summary: Recently, there has been a lot of effort to model extremes of spatially dependent data. These efforts seem to be divided into two distinct groups: the study of max-stable processes, together with the development of statistical models within this framework; the use of more pragmatic, flexible models using Bayesian hierarchical models (BHM) and simulation based inference techniques. Each modeling strategy has its strong and weak points. While max-stable models capture the local behavior of spatial extremes correctly, hierarchical models based on the conditional independence assumption, lack the asymptotic arguments the max-stable models enjoy. On the other hand, they are very flexible in allowing the introduction of physical plausibility into the model. When the objective of the data analysis is to estimate return levels or kriging of extreme values in space, capturing the correct dependence structure between the extremes is crucial and max-stable processes are better suited for these purposes. However when the primary interest is to explain the sources of variation in extreme events Bayesian hierarchical modeling is a very flexible tool due to the ease with which random effects are incorporated in the model. In this paper we model a data set on Portuguese wildfires to show the flexibility of BHM in incorporating spatial dependencies acting at different resolutions.

MSC:

60G70 Extreme value theory; extremal stochastic processes
62F15 Bayesian inference
62P12 Applications of statistics to environmental and related topics
62M30 Inference from spatial processes

References:

[1] Albin, P.: On extremal theory for non differentiable stationary processes. Ph.D. thesis, Dept. of Mathematical Statistics, University of Lund (1987) · Zbl 0656.35101
[2] Albin, P.: On extremal theory for stationary processes. Ann. Probab. 18, 92–128 (1990) · Zbl 0704.60029 · doi:10.1214/aop/1176990940
[3] Banerjee, S., Carlin, B.P., Gelfand, A.: Hierarchical Modelling and Analysis for Spatial Data. Chapman and Hall (2004) · Zbl 1053.62105
[4] Buishand, A., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 2, 624–642 (2008) · Zbl 1273.62258 · doi:10.1214/08-AOAS159
[5] Castellanos, M.E., Cabras, S.: A default Bayesian procedure for the generalized Pareto distribution. J. Stat. Plan. Inference 137, 473–483 (2006) · Zbl 1102.62023 · doi:10.1016/j.jspi.2006.01.006
[6] Chavez-Demoulin, V., Davison, A.: Generalized additive modelling of sample extremes. Appl. Stat. 54, 207–222 (2005) · Zbl 1490.62194
[7] Cocchi, D., Greco, F., Trivisano, C.: Hierarchical space-time modelling of PM 10 pollution. Atmos. Environ. 41, 532–542 (2007) · doi:10.1016/j.atmosenv.2006.08.032
[8] Coles, S.: An Introduction to Statistical Modelling of Extreme Values. Springer, New York (2001) · Zbl 0980.62043
[9] Coles, S., Tawn, J.: Modelling extremes of the areal rainfall process. J. R. Stat. Soc. B 58, 329–347 (1996) · Zbl 0863.60041
[10] Cooley, D., Naveau, P., Joneli, V., Rababtel, A., Grancher, D.: A Bayesian hierarchical extreme value model for lichenometry. Environmetrics 17, 555–574 (2006) · doi:10.1002/env.764
[11] Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial model of extreme precipitation return levels. JASA 102, 824–840 (2007) · Zbl 1469.62389 · doi:10.1198/016214506000000780
[12] de Haan, L., Ferreira, A.: Extreme Value Theory, An Introduction. Springer, New York (2006) · Zbl 1101.62002
[13] de Haan, L., Pereira, T.: Spatial extremes: models for the stationary case. Ann. Stat. 34, 146–168 (2006) · Zbl 1104.60021 · doi:10.1214/009053605000000886
[14] de Zea Bermudez, P., Mendes, J., Pereira, J.M.C., Turkman, K.F., Vasconcelos, M.J.P.: Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004). Int. J. Wildland Fire (2009, in press)
[15] Fawcett, L., Walshaw, D.: A hierarchical model for extreme wind speeds. Appl. Stat. 55, 631–646 (2006) · Zbl 1109.62115
[16] Fougères, A.L., Nolan, J.P., Rootzén, H.: Models for dependent extremes using stable mixtures. Scand. J. Statist. 36, 42–59 (2009) · Zbl 1195.62067
[17] Gelman, A., Pardoe, I.: Bayesian measures of explained variance and pooling in multilevel models. Technometrics 40, 241–251 (2005)
[18] Heffernan, J.E., Tawn, J.: A conditional approach for multivariate extreme values. J. R. Stat. Soc. B 66, 497–546 (2004) · Zbl 1046.62051 · doi:10.1111/j.1467-9868.2004.02050.x
[19] Kabluchko, Z., Schlather, M., de Haan, L.: Stationary Max-stable fields associated to negative definite functions. Ann. Probab. www.arxiv.org (2009) · Zbl 1208.60051
[20] Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983) · Zbl 0518.60021
[21] Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS–a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000) · doi:10.1023/A:1008929526011
[22] Mendes J.M., de Zea Bermudez P., Pereira J.M.C., Turkman K.F., Vasconcelos, M.J.P.: Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes. Environ. Ecol. Stat. doi: 10.1007/s10651-008-0099-3 (2008)
[23] Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. JASA (Theory and Methods) (2009, submitted) · Zbl 1397.62172
[24] Piterbarg, V.: Asymptotic Methods in the Theory of Gaussian Processes and Fields. AMS Monographs (1996) · Zbl 0841.60024
[25] Reed, W.J., McKelvey, K.S.: Power-law behaviour and parametric models for the size-distribution of forest fires. Ecol. Model. 150, 239–254 (2002) · doi:10.1016/S0304-3800(01)00483-5
[26] Ribatet, M.: A User’s Guide to the SpatialExtremes Package. École Polytechnique Fédérale de Lausanne, Switzerland (2009)
[27] Sang, H.: Extreme value modeling for space-time data with meteorological applications. Ph.D. thesis, Duke University (2008)
[28] Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002) · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[29] Thomas, A., Best, N., Lunn, D., Arnold, R., Spiegelhalter, D.: GeoBUGS User Manual Version 1.2 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.