×

Continuous spatial process models for spatial extreme values. (English) Zbl 1306.62334

Summary: We propose a hierarchical modeling approach for explaining a collection of point-referenced extreme values. In particular, annual maxima over space and time are assumed to follow generalized extreme value (GEV) distributions, with parameters \(\mu\), \(\sigma\), and \(\xi\) specified in the latent stage to reflect underlying spatio-temporal structure. The novelty here is that we relax the conditionally independence assumption in the first stage of the hierarchial model, an assumption which has been adopted in previous work. This assumption implies that realizations of the the surface of spatial maxima will be everywhere discontinuous. For many phenomena including, e.g., temperature and precipitation, this behavior is inappropriate. Instead, we offer a spatial process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters. In this sense, the first stage smoothing is viewed as fine scale or short range smoothing while the larger scale smoothing will be captured in the second stage of the modeling. In addition, as would be desired, we are able to implement spatial interpolation for extreme values based on this model. A simulation study and a study on actual annual maximum rainfall for a region in South Africa are used to illustrate the performance of the model.

MSC:

62P12 Applications of statistics to environmental and related topics
62G32 Statistics of extreme values; tail inference
62M30 Inference from spatial processes

Software:

BayesDA; spBayes
Full Text: DOI

References:

[1] Banerjee, S., Carlin, B., and Gelfand, A. (2004), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton: Chapman & Hall. · Zbl 1053.62105
[2] Beirlant, J. (2004), Statistics of Extremes: Theory and Applications, Chichester, U.K: Wiley. · Zbl 1070.62036
[3] Buishand, T., de Haan, L., and Zhou, C. (2008), ”On Spatial Extremes: With Application to a Rainfall Problem,” The Annals of Applied Statistics, 2 (2), 624–642. · Zbl 1273.62258 · doi:10.1214/08-AOAS159
[4] Christensen, O. F., Roberts, G. O., and Sköld, M. (2006), ”Robust Markov Chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models,” Journal of Computational and Graphical Statistics, 15 (1), 1–17. · doi:10.1198/106186006X100470
[5] Coles, S. (1993), ”Regional Modelling of Extreme Storms via Max-Stable Processes,” Journal of the Royal Statistical Society, Ser. B, 55, 797–816. · Zbl 0781.60041
[6] – (2001), An Introduction to Statistical Modeling of Extreme Values, London: Springer. · Zbl 0980.62043
[7] Coles, S., and Tawn, J. (1991), ”Modelling Extreme Multivariate Events,” Journal of the Royal Statistical Society, Ser. B, 53, 377–392. · Zbl 0800.60020
[8] Coles, S., Heffernan, J., and Tawn, J. (1999), ”Dependence Measures for Extreme Value Analyses,” Extremes, 2, 339–365. · Zbl 0972.62030 · doi:10.1023/A:1009963131610
[9] Cooley, D., Naveau, P., and Davis, R. (2008), ”Dependence and Spatial Prediction in Max-Stable Random Fields,” University of Colorado, submitted for review.
[10] Cooley, D., Nychka, D., and Naveau, P. (2007), ”Bayesian Spatial Modeling of Extreme Precipitation Return Levels,” Journal of the American Statistical Association, 102, 824–840. · Zbl 1469.62389 · doi:10.1198/016214506000000780
[11] Dahan, E., and Mendelson, H. (2001), ”An Extreme-Value Model of Concept Testing,” Management Science, 47, 102–116. · doi:10.1287/mnsc.47.1.102.10666
[12] de Haan, L., and Pereira, T. (2006), ”Spatial Extremes: Models for the Stationary Case,” The Annals of Statistics, 34, 146–168. · Zbl 1104.60021 · doi:10.1214/009053605000000886
[13] Diggle, P., Tawn, J., and Moyeed, R. (1998), ”Model-Based Geostatistics,” Journal of the Royal Statistical Society, Ser. C, 47, 299–350. · Zbl 0904.62119 · doi:10.1111/1467-9876.00113
[14] Gelfand, A., and Smith, A. (1990), ”Sampling-Based Approaches to Calculating Marginal Densities,” Journal of the American Statistical Association, 85, 398–409. · Zbl 0702.62020 · doi:10.1080/01621459.1990.10476213
[15] Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004), Bayesian Data Analysis, Boca Raton: Chapman & Hall.
[16] Heffernan, J., and Tawn, J. (2004), ”A Conditional Approach for Multivariate Extreme Values,” Journal of the Royal Statistical Society, Ser. B, 66, 497–530. · Zbl 1046.62051 · doi:10.1111/j.1467-9868.2004.02050.x
[17] Kharin, V., and Zwiers, F. (2005), ”Estimating Extremes in Transient Climate Change Simulations,” Journal of Climate, 18, 1156–1173. · doi:10.1175/JCLI3320.1
[18] Ledford, A., and Tawn, J. (1996), ”Statistics for Near Independence in Multivariate Extreme Values,” Biometrika, 83, 169–187. · Zbl 0865.62040 · doi:10.1093/biomet/83.1.169
[19] – (1997), ”Modelling Dependence Within Joint Tail Regions,” Journal of the Royal Statistical Society, Ser. B, 475–499. · Zbl 0886.62063
[20] Lou Thompson, M., Reynolds, J., Cox, L., Guttorp, P., and Sampson, P. (2001), ”A Review of Statistical Methods for the Meteorological Adjustment of Tropospheric Ozone,” Atmospheric Environment, 35, 617–630. · doi:10.1016/S1352-2310(00)00261-2
[21] Nelsen, R. (2006), An Introduction to Copulas, New York: Springer. · Zbl 1152.62030
[22] Poon, S., Rockinger, M., and Tawn, J. (2004), ”Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications,” Review of Financial Studies, 17, 581–610. · doi:10.1093/rfs/hhg058
[23] Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, New York: Springer. · Zbl 1096.62003
[24] Roberts, S. (2000), ”Extreme Value Statistics for Novelty Detection in Biomedical Dataprocessing,” Science, Measurement and Technology, 147, 363–367. · doi:10.1049/ip-smt:20000841
[25] Sang, H., and Gelfand, A. E. (2009), ”Hierarchical Modeling for Extreme Values Observed Over Space and Time,” Environmental and Ecological Statistics, 16 (3), 407–426. · doi:10.1007/s10651-007-0078-0
[26] Schlather, M., and Tawn, J. (2003), ”A Dependence Measure for Multivariate and Spatial Extreme Values: Properties and Inference,” Biometrika, 90, 139–156. · Zbl 1035.62045 · doi:10.1093/biomet/90.1.139
[27] Stein, M. (1999), Interpolation of Spatial Data: Some Theory for Kriging, New York: Springer. · Zbl 0924.62100
[28] – (2005), ”Space-Time Covariance Functions,” Journal of the American Statistical Association, 100, 310–322. · Zbl 1117.62431 · doi:10.1198/016214504000000854
[29] Stramer, O., and Tweedie, R. (1999), ”Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms*,” Methodology and Computing in Applied Probability, 1, 307–328. · Zbl 0946.60063 · doi:10.1023/A:1010090512027
[30] van Bladeren, D. (2000), Flood Event Database for the Western Cape, report for the Department of Water Affairs, Western Cape Region, Report 283742, SRK Consulting.
[31] Zhang, H. (2004), ”Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics,” Journal of the American Statistical Association, 99, 250–262. · Zbl 1089.62538 · doi:10.1198/016214504000000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.