×

Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. (English) Zbl 1525.62166


MSC:

62P12 Applications of statistics to environmental and related topics

Software:

spBayes

References:

[1] AtyeoJ, WalshawD. 2012. A region‐based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend. Environmetrics23(6): 509-521.
[2] BanerjeeS, CarlinBP, GelfandAE. 2003. Hierarchical Modeling and Analysis for Spatial Data, Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis: Boca Raton, Florida.
[3] BrackenC, RajagopalanB, ChengL, KleiberW, GangopadhyayS. 2016. Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain ArXiv e‐prints arXiv:1512.08560v2 [stat.ME].
[4] BrooksSP, RobertsGO. 1998. Convergence assessment techniques for Markov chain Monte Carlo. Statistics and Computing8: 319-335.
[5] ChengL, AghaKouchakA. 2014. Nonstationary precipitation intensity‐duration‐frequency curves for infrastructure design in a changing climate. Scientific Reports4(7093): 1-6.
[6] ColesS. 2001. An Introduction to Statistical Modeling of Extreme Values, Lecture Notes in Control and Information Sciences. Springer: London. · Zbl 0980.62043
[7] CooleyD, NychkaD, NaveauP. 2007. Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association102(479): 824-840. · Zbl 1469.62389
[8] CooleyD, SainSR. 2012. Discussion of “Statistical Modeling of Spatial Extremes” by A. C. Davison, S. A. Padoan and M. Ribatet. Statistical Science27(2): 187-188. · Zbl 1330.86020
[9] DavisonAC, PadoanS, RibatetM. 2012. Statistical modelling of spatial extremes. Statistical Science27(2): 161-186. · Zbl 1330.86021
[10] DyrrdalAV, LenkoskiA, ThorarinsdottirTL, StordalFrode. 2015. Bayesian hierarchical modeling of extreme hourly precipitation in Norway. Environmetrics26(2): 89-106. · Zbl 1525.62105
[11] EvansJP, JiF, LeeC, SmithP, ArgüesoD, FitaL. 2014. Design of a regional climate modelling projection ensemble experiment-NARCliM. Geoscientific Model Development7(2): 621-629.
[12] EvansJP, McCabeMF. 2010. Regional climate simulation over Australia’s Murray‐Darling basin: a multitemporal assessment. Journal of Geophysical Research: Atmospheres115(D14): 1-15.
[13] EvansJP, McCabeMF. 2013. Effect of model resolution on a regional climate model simulation over southeast Australia. Climate Research56(2): 131-145.
[14] Garcia‐BartualR, SchneiderM. 2001. Estimating maximum expected short‐duration rainfall intensities from extreme convective storms. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere26(9): 675-681.
[15] GeirssonÓP, HrafnkelssonB, SimpsonD. 2015. Computationally efficient spatial modeling of annual maximum 24‐h precipitation on a fine grid. Environmetrics26(5): 339-353. · Zbl 1525.62120
[16] GhoshS, MallickBK. 2011. A hierarchical Bayesian spatio‐temporal model for extreme precipitation events. Environmetrics22(2): 192-204.
[17] GreenJ, JohnsonF, XuerebK, TheC, MooreG. 2012. Revised intensity‐frequency‐duration (IFD) design rainfall estimates for Australia ‐ An overview: Sydney, Australia.
[18] HershfieldDM. 1961. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. Weather Bureau Technical Paper 40, U.S. Department of Commerce. Washington, D.C.
[19] HershfieldDM, WilsonWT. 1958. Generalizing of rainfall intensity‐frequency data. IUGG/IAHS Publication43: 499-506.
[20] HoskingJrm, WallisJR. 2005. Regional Frequency Analysis: An Approach Based on L‐Moments. Cambridge University Press: New York.
[21] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA. pp. 1535.
[22] KoutsoyiannisD, KozonisD, ManetasA. 1998. A mathematical framework for studying rainfall intensity‐duration‐frequency relationships. Journal of Hydrology206(1): 118-135.
[23] LehmannEA, PhatakA, SoltykS, ChiaJ, LauR, PalmerM. 2013. Bayesian hierarchical modelling of rainfall extremes: Adelaide, Australia.
[24] MullerA, BacroJ‐N, LangM. 2008. Bayesian comparison of different rainfall depth‐duration‐frequency relationships. Stochastic Environmental Research and Risk Assessment22(1): 33-46. · Zbl 1169.62397
[25] NadarajahS, AndersonCW, TawnJA. 1998. Ordered multivariate extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology)60(2): 473-496. · Zbl 0910.62054
[26] PeckA, ProdanovicP, SimonovicSPP. 2012. Rainfall intensity duration frequency curves under climate change: City of London, Ontario, Canada. Canadian Water Resources Journal / Revue canadienne des ressources hydriques37(3): 177-189.
[27] PilgrimDH. 1997. Australian Rainfall and Runoff: A Guide to Flood Estimation. Institution of Engineers, Australia: Barton, ACT, Australia.
[28] RobertCR, CasellaG. 2010. Introducing Monte Carlo Methods with R. Springer: New York, NY. · Zbl 1196.65025
[29] RobinsonM, TawnJ. 2000. Extremal analysis of processes sampled at different frequencies. Journal of the Royal Statistical Society: Series B (Statistical Methodology)62(1): 117-135. · Zbl 0976.62093
[30] SangH, GelfandAE. 2010. Continuous spatial process models for spatial extreme values. Journal of Agricultural, Biological, and Environmental Statistics15(1): 49-65. · Zbl 1306.62334
[31] SrivastavRK, SchardongA, SimonovicSP. 2014. Equidistance quantile matching method for updating IDF curves under climate change. Water Resources Management28(9): 2539-2562.
[32] StephensonAG. 2016. Bayesian inference for extreme value modelling. Chapman & Hall/CRC: Boca Raton, Florida.
[33] StephensonAG, LehmannEA, PhatakA. 2016. A max‐stable process model for rainfall extremes at different accumulation durations. Submitted to Weather and Climate Extremes (under revision).
[34] Van de VyverH. 2012. Spatial regression models for extreme precipitation in Belgium. Water Resources Research48(9): 1-17.
[35] Van de VyverH. 2015. Bayesian estimation of rainfall intensity‐duration‐frequency relationships. Journal of Hydrology529(3): 1451-1463.
[36] vanMontfortMAJ. 1997. Concomitants of the Hershfield factor. Journal of Hydrology194: 357-365.
[37] WangY, SoM. 2016. A Bayesian hierarchical model for spatial extremes with multiple durations. Computational Statistics and Data Analysis95: 39-56. · Zbl 1468.62207
[38] YilmazAG, HossainI, PereraBJC. 2014. Effect of climate change and variability on extreme rainfall intensity‐frequency‐duration relationships: a case study of Melbourne. Hydrology and Earth System Sciences18(10): 4065-4076.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.