×

A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. (English) Zbl 1238.62138

Extreme precipitation is investigated based on data simulated by six regional climate models (RCM) from the North American Regional Climate Change Assessment Program (NARCCAP). A hierarchical Bayesian model is used with a Generalized Extreme Value (GEV) distribution of the local data in which the spatial distribution of parameters is described by a regression model with multivariate spatial random effects. The IAR (improper spatial conditional autoregressive) model is used as the prior distribution of this random effect. The model is implemented using a Markov chain Monte Carlo simulation with a Gibbs sampler.

MSC:

62P12 Applications of statistics to environmental and related topics
62G32 Statistics of extreme values; tail inference
62F15 Bayesian inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M30 Inference from spatial processes
65C40 Numerical analysis or methods applied to Markov chains

Software:

spam; spBayes; GMRFLib

References:

[1] Banerjee, S., Gelfand, A.E., Polasek, W.: Geostatistical modelling of spatial interaction data with application to postal service performance. J. Stat. Plan. Inference 90, 87–105 (2000) · Zbl 0960.62102 · doi:10.1016/S0378-3758(00)00111-7
[2] Banerjee, S., Carlin, B., Gelfand, A.: Hierarchical Modeling and Analysis for Spatial Data. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton, FL (2004) · Zbl 1053.62105
[3] Casson, E., Coles, S.: Spatial regression models for extremes. Extremes 1, 449–468 (1999) · Zbl 0935.62109 · doi:10.1023/A:1009931222386
[4] CCSP: CCSP synthesis and assessment product 3-3, 2008: weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A Report by U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Commerce, NOAA’s National Climatic Data Center, Washington, DC. http://www.climatescience.gov/Library/sap/sap3-3/final-report/ (2008)
[5] Coles, S., Dixon, M.: Likelihood-based inference for extreme value models. Extremes 2, 523 (1999) · Zbl 0972.62030 · doi:10.1023/A:1009963131610
[6] Cooley, D., Sain, S.R.: Spatial hierarchical modeling of precipiation extremes from a regional climate model. JABES. http://www.stat.colostate.edu/\(\sim\)cooleyd/Papers/rcmPaper.pdf (2008) · Zbl 1306.62262
[7] Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824–840 (2007) · Zbl 1469.62389 · doi:10.1198/016214506000000780
[8] Cooley, D., Davis, R.A., Naveau, P.: The pairwise beta: a flexible parametric multivariate model for extremes. http://www.stat.colostate.edu/\(\sim\)cooleyd/Papers/pairwiseBeta.pdf (2009) · Zbl 1203.62104
[9] Dalrymple, T.: Flood frequency analyses. Water supply paper 1543-a, U.S. Geological Survey, Reston (1960)
[10] Frei, C., Scholl, R., Fukutome, S., Schmidli, J., Vidale, P.L.: Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J. Geophys. Res. 111, D06105 (2006)
[11] Furrer, R.: Spam: SPArse matrix. R package version 0.14-1 (2008)
[12] Furrer, R., Sain, S.R.: Spam: a sparse matrix R package with emphasis on mcmc methods for Gaussian Markov random fields. J. Stat. Softw. http://www.image.ucar.edu/\(\sim\)ssain/Steve_Sain_Webpage/Publications.html (2008, to appear)
[13] Hosking, J.R.M., Wallis, J.R.: Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge (1997)
[14] Hosking, J., Wallis, J., Wood, E.: Estimation of the generalized extreme-value distribution by the method of probability-weighted-moments. Technometrics 27, 251–261 (1985) · doi:10.1080/00401706.1985.10488049
[15] IPCC: Climate Change 2007: Synthesis Report. IPCC, Geneva. http://www.ipcc.ch/index.htm (2007a)
[16] IPCC: IPCC Fourth Assessment Report: Working Group I Report, The Physical Science Basis. IPCC, Geneva. http://www.ipcc.ch/index.htm (2007b)
[17] Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L.: NCEP/DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002) · doi:10.1175/BAMS-83-11-1631
[18] Kharin, V.V., Zwiers, F.W., Zhang, X.B., Hegerl, G.C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate 20, 1419–1444 (2007) · doi:10.1175/JCLI4066.1
[19] Martins, E., Stedinger, J.: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36, 737–744 (2000) · doi:10.1029/1999WR900330
[20] Mearns, L., Gutowski, W., Jones, R., Leung, R., McGinnis, S., Nunes, A., Qian, Y.: A regional climate change assessment program for North America. EOS, Trans. Am. Geophys. Union 90, 311 (2009). doi: 10.1029/2009EO360002 · doi:10.1029/2009EO360002
[21] Nakicenovic, N., Swart, R.: IPCC Special Report on Emission Scenarios. Cambridge (2000)
[22] Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999) · Zbl 0935.62005
[23] Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability. Chapman and Hall, Boca Raton (2005) · Zbl 1093.60003
[24] Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16, 407–426 (2009) · doi:10.1007/s10651-007-0078-0
[25] Schabenberger, O., Gotway, C.A.: Statistical Methods for Spatial Data Analysis. Texts in Statistical Science. Chapman and Hall/CRC, Boca Raton (2005)
[26] Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33–44 (2002) · Zbl 1035.60054 · doi:10.1023/A:1020977924878
[27] Schliep, E.: Spatial hierarchical models to compare regional climate model output. Master’s thesis, Department of Statistics, Colorado State University, Fort Collins (2009)
[28] Ventura, V., Paciorek, C., Risbey, J.: Controlling the proportion of falsely-rejected hypotheses when conducting multiple tests with climatological data. J. Climate 17, 4343–4356 (2004) · doi:10.1175/3199.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.