×

Superstring propagation through supergravitational shockwaves. (English) Zbl 0992.81518

Summary: In all previous works on strings (and superstrings) in curved space-times, explicit calculations were performed only in purely bosonic gravitational backgrounds. Here, we propose to introduce a background containing also fermionic degrees of freedom, solution of the \(N=1\) supergravity equations in \(D\) dimensions. We find an explicit \(N=1\) linearized supergravity shockwave solution giving the spin-\(\frac 32\) Rarita-Schwinger field, and an exact (full nonlinear) gravitational shock-wave bosonic part. We study a Green-Schwarz superstring propagating in such a supergravity background. We write and solve the superstring equations. Contrary to the purely bosonic shockwave case (in which spinor-string propagation is free), spinor-string coordinates couple here nontrivially to the transverse bosonic coordinates through the fermionic background. We find that outgoing fermionic modes are mixed with ingoing bosonic (and fermionic) modes. This leads to a new feature of particle transmutation between bosons and fermions, described by the superstring ground states (and also by the excited states). The presence of the bosonic-fermionic background provides in string theory a natural physical mechanism to transform bosons into fermions (and vice versa).

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
83E30 String and superstring theories in gravitational theory
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] de Vega, H. J.; Sánchez, N., Phys. Lett., B197, 320 (1987)
[2] de Vega, H. J.; Sánchez, N., Nucl. Phys., B309, 577 (1988)
[3] Gasperini, M.; Sánchez, N.; Veneziano, G., Nucl. Phys., B364, 365 (1991)
[4] Costa, M.; de Vega, H. J., Ann. Phys., 211, 235 (1991) · Zbl 0850.76892
[5] de Vega, H. J.; Sánchez, N., Phys. Rev., D42, 3969 (1990)
[6] de Vega, H. J.; Ramón-Medrano, M.; Sánchez, N., Nucl. Phys., B351, 277 (1991)
[9] Amati, D.; Ciafaloni, M.; Veneziano, G., Int. J. Mod. Phys., A3, 1615 (1988)
[10] Amati, D.; Klimcik, C., Phys. Lett., B210, 92 (1988)
[11] Nilsson, B. E., Nucl. Phys., B188, 176 (1981)
[12] Myers, R. C.; Perry, M. J., Ann. Phys. (N.Y.), 172, 304 (1986) · Zbl 0601.53081
[13] Loustó, C. O.; Sánchez, N., Int. J. Mod. Phys., A5, 915 (1990)
[14] Aichelburg, P. C.; Embacher, F., Class. Quant. Grav., 1, 125 (1984)
[15] Strominger, A., Nucl. Phys., B274, 253 (1986)
[16] Nepomechie, R. I., Phys. Lett., B178, 207 (1986)
[17] Shapiro, J. A.; Taylor, C. C., Phys. Rep., 191, 221 (1990)
[18] Kallosh, R. E., Phys. Scr., T15, 118 (1987)
[19] Shapiro, J. A.; Taylor, C. C., Phys. Rep., 191, 221 (1990), and references therein
[20] Atick, J. J.; Dhar, A., Nucl. Phys., B284, 131 (1987)
[21] Grisaru, M. T.; Zanon, D., Nucl. Phys., B310, 57 (1988)
[22] Gross, D. J.; Harvey, J. A.; Martinec, E.; Rohm, R., Nucl. Phys., B256, 253 (1985)
[23] Atick, I. J.; Dhar, A., Nucl. Phys., B284, 131 (1987)
[24] Aichelburg, P. C.; Sexl, R. U., Gen. Rel. Grav., 2, 303 (1971)
[25] Gradshteyn, I. S.; Ryzhik, J. M., Tables of integrals, series and products (1965), Academic Press: Academic Press New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.