×

Lossless dimension expanders via linearized polynomials and subspace designs. (English) Zbl 1499.11360

A collection of \(d\) linear maps \(\Gamma_1,\ldots,\Gamma_d\) on an \(n\)-dimensional vector space \(F^n\) over a (finite) field \(F\), is called an \((\eta,\beta)\)-dimension expander of degree \(d\), if for every subspace \(U\) of dimension at most \(\eta n\), the dimension of \(\sum_{j=1}^d\Gamma_j(U)\) is at least \(\beta\dim(U)\). Though a random collection of \(d=O(1)\) linear maps on a vector space over a finite field offers excellent (lossless) expansion properties \(\beta \approx d\) for \(\eta\ge \Omega(1/d)\), it is not trivial to give explicit constructions even for modest expansion factor \(\beta = 1+\varepsilon\).
For large finite fields \(|F|\ge \Omega(n)\), the author’s constructions achieve lossless expansion \(\beta\ge (1-\varepsilon)d\) and \(\eta\ge (1-\varepsilon)/d\). Moreover they also obtain degree-proportional expansion for smaller field sizes. As the authors indicate, prior to this work, no explicit constructions of degree-proportional dimension expanders were known.

MSC:

11T06 Polynomials over finite fields
12E20 Finite fields (field-theoretic aspects)
05C48 Expander graphs

References:

[1] Aggarwal, D.; Guo, S.; Obremski, M.; Ribeiro, J.; Stephens-Davidowitz, N., Extractor lower bounds, revisited, Electronic Colloquium on Computational Complexity (ECCC), 26, 173 (2019)
[2] Ben-Aroya, A.; Shinkar, I., A note on subspace evasive sets, Chicago Journal of Theoretical Computer Science, 9, 1-11 (2014) · Zbl 1396.05111 · doi:10.4086/cjtcs.2014.009
[3] B. Barak, R. Impagliazzo, A. Shpilka and A. Wigderson: Personal Communication to Dvir-Shpilka [8], 2004.
[4] Bourgain, J., Expanders and dimensional expansion, Comptes Rendus Mathematique, 347, 357-362 (2009) · Zbl 1160.22006 · doi:10.1016/j.crma.2009.02.009
[5] Bourgain, J.; Yehudayoff, A., Expansion in SL_2(ℝ) and monotone expanders, Geometric and Functional Analysis, 23, 1-41 (2013) · Zbl 1268.05103 · doi:10.1007/s00039-012-0200-9
[6] Z. Dvir and S. Lovett: Subspace evasive sets, in: Proceedings of the 44th Annual ACM Symposium on Theory of Computing, 351-358. ACM, 2012. · Zbl 1286.94109
[7] Dvir, Z.; Shpilka, A., Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits, SIAM J. Comput., 36, 1404-1434 (2007) · Zbl 1124.68042 · doi:10.1137/05063605X
[8] Dvir, Z.; Shpilka, A., Towards dimension expanders over finite fields, Combinatorica, 31, 305-320 (2011) · Zbl 1265.05595 · doi:10.1007/s00493-011-2540-8
[9] Dvir, Z.; Wigderson, A., Monotone expanders: Constructions and applications, Theory of Computing, 6, 291-308 (2010) · Zbl 1213.68440 · doi:10.4086/toc.2010.v006a012
[10] M. A. Forbes and V. Guruswami: Dimension expanders via rank condensers, in: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 800-814, 2015.
[11] M. A. Forbes and A. Shpilka: On identity testing of tensors, low-rank recovery and compressed sensing, in: Proceedings of the forty-fourth annual ACM symposium on Theory of computing, 163-172. ACM, 2012. · Zbl 1286.68489
[12] Gabidulin, E. M., Theory of codes with maximum rank distance, Probl. Inform. Transm., 21, 1-12 (1985) · Zbl 0585.94013
[13] A. Gabizon: Deterministic extractors for affine sources over large fields, in: Deterministic Extraction from Weak Random Sources, 33-53. Springer, 2011.
[14] Guruswami, V.; Kopparty, S., Explicit subspace designs, Combinatorica, 36, 161-185 (2016) · Zbl 1389.51003 · doi:10.1007/s00493-014-3169-1
[15] Guruswami, V.; Rudra, A., Explicit codes achieving list decoding capacity: Error-correction with optimal redundancy, IEEE Transactions on Information Theory, 54, 135-150 (2008) · Zbl 1205.94125 · doi:10.1109/TIT.2007.911222
[16] V. Guruswami: Linear-algebraic list decoding of folded Reed-Solomon codes, in: Proceedings of the 26th Annual IEEE Conference on Computational Complexity (CCC 2011), 77-85, 2011.
[17] Guruswami, V.; Umans, C.; Vadhan, S., Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes, Journal of the ACM (JACM), 56, 20 (2009) · Zbl 1325.68169 · doi:10.1145/1538902.1538904
[18] Guruswami, V.; Wang, C., Linear-algebraic list decoding for variants of Reed-Solomon codes, IEEE Transactions on Information Theory, 59, 3257-3268 (2013) · Zbl 1364.94607 · doi:10.1109/TIT.2013.2246813
[19] V. Guruswami and C. Wang: Evading subspaces over large fields and explicit list-decodable rank-metric codes, in: Proceedings of the 18th International Workshop on Randomization and Computation (RANDOM 2014), 748-761, 2014, full version at arXiv:1311.7084. · Zbl 1359.94852
[20] Guruswami, V.; Wang, C.; Xing, C., Explicit list-decodable rank-metric and subspace codes via subspace designs, IEEE Transactions on Information Theory, 62, 2707-2718 (2016) · Zbl 1359.94797 · doi:10.1109/TIT.2016.2544347
[21] V. Guruswami and C. Xing: Folded codes from function field towers and improved optimal rate list decoding, in: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012), 339-350, 2012, full version at arXiv:1204.4209. · Zbl 1286.94111
[22] V. Guruswami and C. Xing: List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes up to the Singleton bound, in: Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC 2013), 843-852. ACM, 2013. · Zbl 1293.94110
[23] Guruswami, V.; Xing, C.; Yuan, C., Subspace designs based on algebraic function fields, Transactions of the American Mathematical Society, 370, 8757-8775 (2018) · Zbl 1397.05031 · doi:10.1090/tran/7369
[24] Harrow, A. W., Quantum expanders from any classical Cayley graph expander, Quantum Information & Computation, 8, 715-721 (2008) · Zbl 1236.81067 · doi:10.26421/QIC8.8-9-2
[25] Karnin, Z. S.; Shpilka, A., Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in, Combinatorica, 31, 333-364 (2011) · Zbl 1274.68133 · doi:10.1007/s00493-011-2537-3
[26] R. Lidl and H. Niederreiter: Introduction to finite fields and their applications, Cambridge University Press, 1994. · Zbl 0820.11072
[27] Lubotzky, A.; Zelmanov, E., Dimension expanders, Journal of Algebra, 319, 730-738 (2008) · Zbl 1154.15002 · doi:10.1016/j.jalgebra.2005.12.033
[28] H. Niederreiter and C. Xing: Algebraic geometry in coding theory and cryptography, Princeton University Press, 2009. · Zbl 1185.14002
[29] Pudlák, P.; Rödl, V., Pseudorandom sets and explicit constructions of Ramsey graphs, Complexity of computations and proofs, 327-346. (2004), Caserta: Dept. Math., Seconda Univ. Napoli, Caserta · Zbl 1074.05088
[30] F. Parvaresh and A. Vardy: Correcting errors beyond the Guruswami-Sudan radius in polynomial time, in: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 285-294, 2005.
[31] Radhakrishnan, J.; Ta-Shma, A., Bounds for dispersers, extractors, and depth-two superconcentrators, SIAM Journal on Discrete Mathematics, 13, 2-24 (2000) · Zbl 1023.94025 · doi:10.1137/S0895480197329508
[32] Reingold, O.; Vadhan, S.; Wigderson, A., Entropy waves, the zig-zag graph product, and new constant-degree expanders, Annals of Mathematics, 155, 157-187 (2002) · Zbl 1008.05101 · doi:10.2307/3062153
[33] H. Stichtenoth: Algebraic function fields and codes, volume 254, Springer Science & Business Media, 2009. · Zbl 1155.14022
[34] Vadhan, S. P., Pseudorandomness, Foundations and Trends@ in Theoretical Computer Science, 7, 1-336 (2012) · Zbl 1308.68011 · doi:10.1561/0400000010
[35] A. Wigderson: Expanders: Old and new applications and problems, Lecture at the Institute for Pure and Applied Mathematics (IPAM), February 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.