×

Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets. (English) Zbl 1066.42022

Summary: We build a multidimensional wavelet decomposition based on polyharmonic B-splines. The pre-wavelets are polyharmonic splines and so not tensor products of univariate wavelets. Explicit construction of the filters specified by the classical dyadic scaling relations is given and the decay of the functions and the filters is shown. We then design the decomposition/recomposition algorithm by means of downsampling/upsampling and convolution products.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
41A15 Spline approximation
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Bacchelli, B.; Bozzini, M.; Rabut, C., A fast wavelet algorithm for multidimensional signal using polyharmonic splines, (Cohen, A.; Merrien, J. L.; Schumaker, L. L., Curves and Surfaces Fitting: Saint-Malo 2002 (2003), Nashboro Press: Nashboro Press Brentwood, TN), 21-30 · Zbl 1036.65115
[2] B. Bacchelli, M. Bozzini, M. Rossini, On the errors of a multidimensional MRA based on non separable scaling functions, Int. J. Wavelets Multiresolut. Informat. Process. (2003), in press; B. Bacchelli, M. Bozzini, M. Rossini, On the errors of a multidimensional MRA based on non separable scaling functions, Int. J. Wavelets Multiresolut. Informat. Process. (2003), in press · Zbl 1251.65009
[3] Chui, C.; Ward, C. K.; Jetter, J. D.; Cardinal, K., Cardinal interpolation with differences of tempered distributions. Advances in the theory and applications of radial basis functions, Comput. Math. Appl., 24, 12, 35-48 (1992) · Zbl 0765.41003
[4] Dahmen, W., Wavelet and multiscale methods for operator equations, Acta Numer., 6, 55-228 (1997) · Zbl 0884.65106
[5] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909-996 (1988) · Zbl 0644.42026
[6] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[7] de Boor, C.; De Vore, R. A.; Ron, A., On the construction of multivariate (pre) wavelets, Constr. Approx., 9, 123-166 (1993) · Zbl 0773.41013
[8] De Vore, R. A.; Lucier, B., Wavelets, Acta Numer., 1, 1-56 (1992) · Zbl 0766.65009
[9] Duchon, J., Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, R.A.I.R.O., Anal. Numér., 10, 12, 345-369 (1976)
[10] Dyn, N.; Levin, D., Bell shaped basis function for surface fitting, (Ziegler, Z., Approximation Theory and Applications (1981), Academic Press), 113-129
[11] Dyn, N.; Levin, D., Numerical solution of systems originating from integral equations and surface interpolation, SIAM Numer. Anal., 20, 2, 377-390 (1983) · Zbl 0517.65096
[12] Dyn, N.; Levin, D.; Rippa, S., Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Statist. Comput., 7, 2, 639-659 (1986) · Zbl 0631.65008
[13] Jaffard, S., Propriétés des matrices “bien localisées” prés de leur diagonale et quelques applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 5, 461-476 (1990) · Zbl 0722.15004
[14] Lemarié, P. G., Wavelets, spline interpolation and Lie groups, (Harmonic Analysis (Sendai, 1990). Harmonic Analysis (Sendai, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo (1991)), 154-164 · Zbl 0781.43004
[15] Lemarié, P. G., Base d’ondelettes sur les groupes de Lie stratifiés (French) [Wavelet basis on stratified Lie groups], Bull. Soc. Math. France, 117, 2, 211-232 (1989) · Zbl 0711.43004
[16] Lemarié, P. G., Ondelettes localization exponentielle (French) [Wavelets with exponential localization], J. Math. Pures Appl. (9), 67, 3, 227-236 (1988) · Zbl 0758.42020
[17] Madych, W. R., Polyharmonic splines, multiscale analysis and entire functions. Multivariate approximation and interpolation (Duisburg, 1989), (Intern. Er. Numer. Math., vol. 94 (1990), Birkhäuser: Birkhäuser Basel), 205-216 · Zbl 0707.41012
[18] Madych, W. R., Some elementary properties of multiresolution analyses of \(L^2(R^n)\). Wavelets, (Wavelet Analysis Applications, vol. 2 (1992), Academic Press: Academic Press Boston, MA), 259-294 · Zbl 0760.41030
[19] Madych, W. R., Spline type summability for multivariate sampling. Analysis of divergence (Orono, ME, 1997), (Appl. Numer. Harmon. Anal. (1999), Birkhäuser: Birkhäuser Boston, MA), 475-512 · Zbl 0943.94002
[20] Micchelli, C.; Rabut, C.; Utreras, F., Using the refinement equation for the construction of pre-wavelets, III: Elliptic splines, Numer. Algorithms, 1, 331-352 (1991) · Zbl 0765.65024
[21] Meyer, Y., Wavelets and Operators (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0776.42019
[22] C. Rabut, \(B\); C. Rabut, \(B\)
[23] Rabut, C., Elementary polyarmonic cardinal \(B\)-splines, Numer. Algorithms, 2, 39-46 (1992) · Zbl 0851.41010
[24] Rudin, W., Functional Analysis (1973), McGraw-Hill: McGraw-Hill New Delhi · Zbl 0253.46001
[25] Schwartz, L., Theory des distributions (1966), Hermann: Hermann Paris
[26] D. Van De Ville, T. Blu, M. Unser, Isotropic polyharmonic \(B\); D. Van De Ville, T. Blu, M. Unser, Isotropic polyharmonic \(B\)
[27] Vo-Khac, K., Distributions, analyse de Fourier, opérateurs aux derivées partielles, tome 2 (1972), Vuibert: Vuibert Paris
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.