×

Constrained linear-quadratic optimization problems with parameter-dependent entries. (English) Zbl 1528.49028

The author’s abstract: The paper provides strong convergence of solutions to a sequence of linear-quadratic optimization problems defined in an abstract functional framework. Each problem is accompanied by the constraint of reaching a given target within a prescribed precision. We show that the problems are well-posed and characterize their solutions. The main result provides the conditions under which these solutions converge to the minimizer of the limit problem. The generality of the result allows its application to a wide range of problems: elliptic, parabolic, control ones, etc. The examples presented in the paper consider optimal approximate controls of the heat equation and optimal approximate solutions to the Poisson equation.

MSC:

49N10 Linear-quadratic optimal control problems
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
49J20 Existence theories for optimal control problems involving partial differential equations
49J45 Methods involving semicontinuity and convergence; relaxation
93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI

References:

[1] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2010) · Zbl 1218.47001
[2] Brahim-Otsmane, S., Francfort, G., Murat, F.: Correctors for the homogenization of the wave and heat equations. J. de Mathématiques Pures et Appliquées 71, 197-231 (1992) · Zbl 0837.35016
[3] Braides, A.: A handbook of \(\Gamma \) -convergence in handbook of differential equations: stationary partial differential equations (eds. M. Chipot, P. Quittner). North-Holland 3, 101-213 (2006) · Zbl 1195.35002
[4] Chan, T.F., Shen, J.: Image processing and analysis, Society for industrial and applied mathematics (2009)
[5] Carthel, C.; Glowinski, R.; Lions, JL, On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl., 82, 3, 429-484 (1994) · Zbl 0825.93316 · doi:10.1007/BF02192213
[6] Dall’aglio, A., Murat, F.: A corrector result for \(H \)-converging parabolic problems with time-dependent coefficients. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. 25(1-2), 329-73 (1997) · Zbl 1005.35015
[7] Dautray, R.; Lions, JL, Mathematical Analysis and Numerical Methods for Science and Technology 1-6 (1992), Berlin: Springer, Berlin · Zbl 0755.35001
[8] Donato, P.; Nabil, A., Approximate controllability of linear parabolic equations in perforated domains, ESAIM Control Optim. Calc. Var., 6, 21-38 (2001) · Zbl 0964.35015 · doi:10.1051/cocv:2001102
[9] Donato, P.; Jose, EC, Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance, ESAIM Control Optim. Calc. Var., 21, 1, 138-164 (2015) · Zbl 1320.35044 · doi:10.1051/cocv/2014029
[10] Fernández-Cara, E.; Münch, A., Numerical exact controllability of the 1D heat equation: duality and Carleman weights, J. Optim. Theory Appl., 163, 1, 253-285 (2014) · Zbl 1322.93019 · doi:10.1007/s10957-013-0517-z
[11] Fabre, C.; Puel, JP; Zuazua, E., Approximate controllability for the semilinear heat equation, Proc. R. Soc. Edinb., 125A, 31-61 (1995) · Zbl 0818.93032 · doi:10.1017/S0308210500030742
[12] Hu, J.; Zhang, X.; Kang, Z., Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization, J. Intell. Mater. Syst. Struct., 29, 10, 2277-2294 (2018) · doi:10.1177/1045389X18758178
[13] Lazar, M.; Molinari, C., Optimal distributed control of the heat-type equations by spectral decomposition, Opt. Control Appl. Methods, 42, 4, 891-926 (2021) · Zbl 1475.49008 · doi:10.1002/oca.2708
[14] Lazar, M., Zuazua, E.: Greedy search of optimal approximate solutions. Pure Appl. Funct. Anal., p. 18 (2022) · Zbl 1526.93012
[15] Nakić I,Täufer, M., Tautenhahn, M., Veselić, I.: Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM Control Optim. Calc. Var. 26 Paper No. 54, pp. 26 (2020) · Zbl 1451.35241
[16] Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer Briefs in Optimization (2015) · Zbl 1322.90004
[17] Schmidt, S., Schulz, VH.: A Linear View on Shape Optimization. arXiv:2203.07175, p. 20 (2022) · Zbl 1523.49050
[18] Seelmann, A.; Veselic, I., Exhaustion approximation for the control problemof the heat or Schrödinger semigroup on unbounded domains, Arch. Math. Basel, 115, 2, 195-213 (2020) · Zbl 1442.35488 · doi:10.1007/s00013-020-01484-x
[19] Tartar, L., The General Theory of Homogenization: A Personalized Introduction (2009), Berlin: Springer, Berlin · Zbl 1188.35004
[20] Zuazua, E., Approximate controllability for linear parabolic equations with rapidly oscillating coefficients, Control. Cybern., 23, 4, 793-801 (1994) · Zbl 0815.93041
[21] Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems, Editor(s): C.M. Dafermos, E. Feireisl, Handbook of Differential Equations: Evolutionary Equations, North-Holland 3, 527-621 (2007) · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.