×

Stability of stationary states of non-local equations with singular interaction potentials. (English) Zbl 1219.35342

Summary: We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results.

MSC:

35R09 Integro-partial differential equations
35B35 Stability in context of PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Carrillo, J. A.; Toscani, G., Wasserstein metric and large-time asymptotics of non-linear diffusion equations., (New trends in mathematical physics (2004), World Sci. Publ: World Sci. Publ Hackensack, NJ), 234-244 · Zbl 1089.76055
[2] Villani, C., A survey of mathematical topics in the collisional kinetic theory of gases, (Friedlander, S.; Serre, D., Handbook of Fluid Mechanics (2002))
[3] Morale, D.; Capasso, V.; Oelschlager, K., An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biol., 50, 49-66 (2005) · Zbl 1055.92046
[4] J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepc˘ev, Global-in-time weak measure solutions, finite-time aggregation and confinement for nonlocal interaction equations, preprint UAB 17 (2009) (submitted for publication).; J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepc˘ev, Global-in-time weak measure solutions, finite-time aggregation and confinement for nonlocal interaction equations, preprint UAB 17 (2009) (submitted for publication). · Zbl 1215.35045
[5] Bertozzi, A.; Carrillo, J. A.; Laurent, T., Blowup in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22, 683-710 (2009) · Zbl 1194.35053
[6] G. Raoul, Non-local interaction equations: stationary states and stability analysis, preprint CMLA-ENS Cachan 25 (2009) (submitted for publication).; G. Raoul, Non-local interaction equations: stationary states and stability analysis, preprint CMLA-ENS Cachan 25 (2009) (submitted for publication).
[7] K. Fellner, G. Raoul, Stable stationary states of non-local interaction equations, M3AS (in press).; K. Fellner, G. Raoul, Stable stationary states of non-local interaction equations, M3AS (in press). · Zbl 1213.35079
[8] Carrillo, J. A.; McCann, R. J.; Villani, C., Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 19, 971-1018 (2003) · Zbl 1073.35127
[9] Li, H.; Toscani, G., Long-time asymptotics of kinetic models of granular flows, Arch. Ration. Mech. Anal., 172, 3, 407-428 (2004) · Zbl 1116.82025
[10] Benedetto, D.; Caglioti, E.; Pulvirenti, M., A kinetic equation for granular media, RAIRO Modél. Math. Anal. Numér., 31, 615-641 (1997) · Zbl 0888.73006
[11] Civelekoglu, G.; Edelstein-Keshet, L., Modelling the dynamics of F-actin in the cell, Bull. Math. Biol., 56, 4, 587-616 (1994) · Zbl 0805.92004
[12] Kang, K.; Perthame, B.; Stevens, A.; Velázquez, J. J.L., An integro-differential equation model for alignment and orientational aggregation, J. Differential Equations, 246, 4, 1387-1421 (2009) · Zbl 1157.47054
[13] Primi, I.; Stevens, A.; Velazquez, J. J.L., Mass-selection in alignment models with non-deterministic effects, Comm. Partial Differential Equations, 34, 5 (2009) · Zbl 1169.82022
[14] Ambrosio, L.; Gigli, N.; Savar, G., (Gradient Flows in Metric Spaces and in the Space of Probability Measures. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich (2008), Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 1145.35001
[15] Burger, M.; Di Francesco, M., Large time behaviour of nonlocal aggregation models with non-linear diffusion, Netw. Heterog. Media, 3, 749-785 (2008) · Zbl 1171.35328
[16] Bodnar, M.; Velazquez, J. J.L., Derivation of macroscopic equations for individual cell-based models: a formal approach, Math. Methods Appl. Sci., 28, 15, 1757-1779 (2005) · Zbl 1074.60101
[17] Boi, S.; Capasso, V.; Morale, D., Modeling the aggregative behaviour of ants of the species Polyergus rufescens, Spatial Heterogeneity in Ecological Models (Alcala de Henares 1998). Spatial Heterogeneity in Ecological Models (Alcala de Henares 1998), Nonlinear Anal. RWA, 1, 163-176 (2000) · Zbl 1011.92053
[18] Blanchet, A.; Dolbeault, J.; Perthame, B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006) · Zbl 1112.35023
[19] Blanchet, A.; Calvez, V.; Carrillo, J. A., Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46, 691-721 (2008) · Zbl 1205.65332
[20] Laurent, T., Local and global existence for an aggregation equation, Comm. Partial Differential Equations, 32, 1941-1964 (2007) · Zbl 1132.35088
[21] J.A. Carrillo, J. Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods, Proceeding of the 5th European Congress of Mathematicians, preprint.; J.A. Carrillo, J. Rosado, Uniqueness of bounded solutions to aggregation equations by optimal transport methods, Proceeding of the 5th European Congress of Mathematicians, preprint. · Zbl 1198.35007
[22] Bertozzi, A. L.; Brandman, J., Finite-time blow-up of \(L^\infty \)-weak solutions of an aggregation equation, Comm. Math. Sci., 8, 1, 45-65 (2010) · Zbl 1197.35061
[23] Bertozzi, A.; Laurent, T., Finite-time blow-up of solutions of an aggregation equation in \(R^n\), Comm. Math. Phys., 274, 3, 717-735 (2007) · Zbl 1132.35392
[24] Y.-L. Chuang, Y.R. Huang, M.R. D’Orsogna, A.L. Bertozzi, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials, in: IEEE International Conference on Robotics and Automation, 2007, pp. 2292-2299.; Y.-L. Chuang, Y.R. Huang, M.R. D’Orsogna, A.L. Bertozzi, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials, in: IEEE International Conference on Robotics and Automation, 2007, pp. 2292-2299.
[25] Mogilner, A.; Edelstein-Keshet, L., A non-local model for a swarm, J. Math. Bio., 38, 534-570 (1999) · Zbl 0940.92032
[26] Topaz, C. M.; Bertozzi, A. L.; Lewis, M. A., A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68, 7, 1601-1623 (2006) · Zbl 1334.92468
[27] Theil, F., A proof of crystallization in two dimensions, Comm. Math. Phys., 262, 1, 209-236 (2006) · Zbl 1113.82016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.