×

The gradient flow of the Möbius energy: \(\epsilon\)-regularity and consequences. (English) Zbl 1440.57001

The author continues his study of the gradient flow of the Möbius energy introduced by J. O’Hara [Topology 30, No. 2, 241–247 (1991; Zbl 0733.57005)], see [S. Blatt, Math. Ann. 370, No. 3–4, 993–1061 (2018; Zbl 1398.53071); Calc. Var. Partial Differ. Equ. Journal Profile 43, No. 3–4, 403–439 (2012; Zbl 1246.53086)]. The author shows a fundamental \(\epsilon\)-regularity result that allows to bound the infinity norm of all derivatives for some time if the energy is small on a certain scale. This result enables him to characterize the formation of a singularity in terms of concentrations of energy and allows the construction of a blow-up profile at a possible singularity. Finally, the author settles these problems for planar curves with the following theorem: Let \(\gamma_0\in \mathbb{R}\) be a closed smoothly embedded curve. Then the negative gradient flow of the Möbius energy exists for all times and converges to a round circle as time goes to infinity.

MSC:

57K10 Knot theory
53A04 Curves in Euclidean and related spaces
53E99 Geometric evolution equations
35S10 Initial value problems for PDEs with pseudodifferential operators
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
49Q10 Optimization of shapes other than minimal surfaces

References:

[1] 10.1016/S0040-9383(02)00016-2 · Zbl 1030.57006 · doi:10.1016/S0040-9383(02)00016-2
[2] 10.1142/S0218216511009704 · Zbl 1238.57007 · doi:10.1142/S0218216511009704
[3] 10.1007/s00526-011-0416-9 · Zbl 1246.53086 · doi:10.1007/s00526-011-0416-9
[4] 10.1007/s00208-017-1540-4 · Zbl 1398.53071 · doi:10.1007/s00208-017-1540-4
[5] 10.1137/S0036141001383709 · Zbl 1031.53092 · doi:10.1137/S0036141001383709
[6] 10.2307/2946626 · Zbl 0817.57011 · doi:10.2307/2946626
[7] 10.1515/ADVGEOM.2006.031 · Zbl 1136.58010 · doi:10.1515/ADVGEOM.2006.031
[8] 10.1002/(SICI)1097-0312(200004)53:4<399::AID-CPA1>3.3.CO;2-4 · doi:10.1002/(SICI)1097-0312(200004)53:4<399::AID-CPA1>3.3.CO;2-4
[9] 10.4310/CAG.2002.v10.n2.a4 · Zbl 1029.53082 · doi:10.4310/CAG.2002.v10.n2.a4
[10] 10.1023/B:AGAG.0000047526.21237.04 · Zbl 1080.58017 · doi:10.1023/B:AGAG.0000047526.21237.04
[11] 10.1007/s00526-010-0328-0 · Zbl 1205.35147 · doi:10.1007/s00526-010-0328-0
[12] 10.1007/978-3-0348-9234-6 · doi:10.1007/978-3-0348-9234-6
[13] 10.1016/0040-9383(91)90010-2 · Zbl 0733.57005 · doi:10.1016/0040-9383(91)90010-2
[14] 10.1007/978-3-0346-0416-1 · Zbl 1235.46002 · doi:10.1007/978-3-0346-0416-1
[15] 10.1007/978-3-0346-0419-2 · Zbl 1235.46003 · doi:10.1007/978-3-0346-0419-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.