×

Asevolution: a relativistic \(N\)-body implementation of the (a)symmetron. (English) Zbl 1523.83074

MSC:

83F05 Relativistic cosmology
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
70F10 \(n\)-body problems
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
81R40 Symmetry breaking in quantum theory
83C10 Equations of motion in general relativity and gravitational theory
57R67 Surgery obstructions, Wall groups
83-04 Software, source code, etc. for problems pertaining to relativity and gravitational theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] T. Vachaspati, Chapter 6: Formation of kinks, in K. Walls and D. Walls, An Introduction to Classical and Quantum Solitons Cambridge University Press (2007), pp. 90-112, . · doi:10.1017/9781009290456.007
[2] Adamek, Julian; Clarkson, Chris; Daverio, David; Durrer, Ruth; Kunz, Martin, Safely smoothing spacetime: backreaction in relativistic cosmological simulations, Class. Quant. Grav., 36 (2019) · doi:10.1088/1361-6382/aaeca5
[3] J. Adamek, D. Daverio, R. Durrer and M. Kunz, General relativity and cosmic structure formation, Nature Phys.12 (2016) 346 [1509.01699] [inspire]. · doi:10.1038/nphys3673
[4] Adamek, Julian; Daverio, David; Durrer, Ruth; Kunz, Martin, gevolution: a cosmological N-body code based on General Relativity, JCAP, 07 (2016) · doi:10.1088/1475-7516/2016/07/053
[5] Adamek, Julian; Durrer, Ruth; Kunz, Martin, Relativistic N-body simulations with massive neutrinos, JCAP, 11 (2017) · Zbl 1515.81240 · doi:10.1088/1475-7516/2017/11/004
[6] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[7] BOSS Collaboration; Alam, Shadab, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc., 470, 2617-2652 (2017) · doi:10.1093/mnras/stx721
[8] Alestas, George; Antoniou, Ioannis; Perivolaropoulos, Leandros, Hints for a Gravitational Transition in Tully-Fisher Data, Universe, 7, 366 (2021) · doi:10.3390/universe7100366
[9] J.O. Andersen, Chapter 6: Quantum statistical mechanics, in Introduction to statistical mechanics, Akademika forlag (2012).
[10] Baldi, Marco; Pettorino, Valeria; Robbers, Georg; Springel, Volker, Hydrodynamical N-body simulations of coupled dark energy cosmologies, Mon. Not. Roy. Astron. Soc., 403, 1684-1702 (2010) · doi:10.1111/j.1365-2966.2009.15987.x
[11] Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia, Nonlinear structure formation in the Cubic Galileon gravity model, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/027
[12] C. Barrera-Hinojosa and B. Li, GRAMSES: a new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code description, JCAP01 (2020) 007 [1905.08890] [inspire]. · Zbl 1490.83039 · doi:10.1088/1475-7516/2020/01/007
[13] Bertotti, B.; Iess, L.; Tortora, P., A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374-376 (2003) · doi:10.1038/nature01997
[14] Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A., A Unified Description of Screened Modified Gravity, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.044015
[15] Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo, Systematic Simulations of Modified Gravity: Symmetron and Dilaton Models, JCAP, 10 (2012) · doi:10.1088/1475-7516/2012/10/002
[16] Briddon, Chad; Burrage, Clare; Moss, Adam; Tamosiunas, Andrius, SELCIE: a tool for investigating the chameleon field of arbitrary sources, JCAP, 12 (2021) · Zbl 1487.83054 · doi:10.1088/1475-7516/2021/12/043
[17] Davis, Anne-Christine; Li, Baojiu; Mota, David F.; Winther, Hans A., Structure Formation in the Symmetron Model, Astrophys. J., 748, 61 (2012) · doi:10.1088/0004-637X/748/1/61
[18] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys.5 (1964) 1252 [inspire]. · doi:10.1063/1.1704233
[19] Odintsov, Sergey D.Sáez-Gómez, DiegoXambó-Descamps, SebastianProceedings, Cosmology, the Quantum Vacuum, and Zeta Functions: Bellaterra, Barcelona, Spain, March 8-10, 20102011137pp.1382
[20] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[21] Desmond, Harry; Jain, Bhuvnesh; Sakstein, Jeremy, Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043537
[22] Desmond, Harry; Sakstein, Jeremy, Screened fifth forces lower the TRGB-calibrated Hubble constant too, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.023007
[23] G. Esposito-Farese, Tests of scalar-tensor gravity, AIP Conf. Proc.736 (2004) 35 [gr-qc/0409081] [inspire]. · doi:10.1063/1.1835173
[24] Francfort, JérémieObservables In Cosmology: Three Astronomical Perspectives2022
[25] Francfort, Jérémie; Ghosh, Basundhara; Durrer, Ruth, Cosmological Number Counts in Einstein and Jordan frames, JCAP, 09 (2019) · Zbl 1541.85015 · doi:10.1088/1475-7516/2019/09/071
[26] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica12 (2003) 399. · Zbl 1046.65110 · doi:10.1017/S0962492902000144
[27] Hassani, Farbod; Adamek, Julian; Kunz, Martin; Vernizzi, Filippo, k-evolution: a relativistic N-body code for clustering dark energy, JCAP, 12 (2019) · Zbl 1542.83056 · doi:10.1088/1475-7516/2019/12/011
[28] Hassani, Farbod; L’Huillier, Benjamin; Shafieloo, Arman; Kunz, Martin; Adamek, Julian, Parametrising non-linear dark energy perturbations, JCAP, 04 (2020) · Zbl 1491.83022 · doi:10.1088/1475-7516/2020/04/039
[29] Hassani, Farbod; Lombriser, Lucas, N-body simulations for parametrized modified gravity, Mon. Not. Roy. Astron. Soc., 497, 1885-1894 (2020) · doi:10.1093/mnras/staa2083
[30] Hinterbichler, Kurt; Khoury, Justin, Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.231301
[31] Ivanov, Mikhail M.; McDonough, Evan; Hill, J. Colin; Simonović, Marko; Toomey, Michael W.; Alexander, Stephon; Zaldarriaga, Matias, Constraining Early Dark Energy with Large-Scale Structure, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.103502
[32] N. Kaiser, Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc.227 (1987) 1. · doi:10.1093/mnras/227.1.1
[33] Li, Baojiu, Simulating Large-Scale Structure for Models of Cosmic Acceleration (2018)
[34] B. Li, G.-B. Zhao, R. Teyssier and K. Koyama, ECOSMOG: An Efficient Code for Simulating Modified Gravity, JCAP01 (2012) 051 [1110.1379] [inspire]. · doi:10.1088/1475-7516/2012/01/051
[35] Llinares, Claudio; Mota, David, Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.161101
[36] C. Llinares and D.F. Mota, Cosmological simulations of screened modified gravity out of the static approximation: effects on matter distribution, Phys. Rev. D89 (2014) 084023 [1312.6016] [inspire]. · doi:10.1103/PhysRevD.89.084023
[37] Llinares, Claudio; Mota, David F.; Winther, Hans A., ISIS: a new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters, Astron. Astrophys., 562, A78 (2014) · doi:10.1051/0004-6361/201322412
[38] Llinares, Claudio; Pogosian, Levon, Domain walls coupled to matter: the symmetron example, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124041
[39] R. Nagata, T. Chiba and N. Sugiyama, WMAP constraints on scalar- tensor cosmology and the variation of the gravitational constant, Phys. Rev. D69 (2004) 083512 [astro-ph/0311274] [inspire]. · doi:10.1103/PhysRevD.69.083512
[40] L. Perivolaropoulos and F. Skara, Hubble tension or a transition of the Cepheid SnIa calibrator parameters?, Phys. Rev. D104 (2021) 123511 [2109.04406] [inspire]. · doi:10.1103/PhysRevD.104.123511
[41] L. Perivolaropoulos and F. Skara, Gravitational transitions via the explicitly broken symmetron screening mechanism, Phys. Rev. D106 (2022) 043528 [2203.10374] [inspire]. · doi:10.1103/PhysRevD.106.043528
[42] Planck Collaboration; Ade, P. A. R., Planck intermediate results. XIII. Constraints on peculiar velocities, Astron. Astrophys., 561, A97 (2014) · doi:10.1051/0004-6361/201321299
[43] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[44] Racca, Giuseppe D., The Euclid mission design, Proc. SPIE Int. Soc. Opt. Eng., 9904, 0O (2016) · doi:10.1117/12.2230762
[45] Reverberi, Lorenzo; Daverio, David, - Relativistic Cosmological Simulations in f(R) Gravity I: Methodology, JCAP, 07 (2019) · Zbl 1515.83004 · doi:10.1088/1475-7516/2019/07/035
[46] Riess, Adam G., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s^−1 Mpc^−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett., 934, L7 (2022) · doi:10.3847/2041-8213/ac5c5b
[47] Pan-STARRS1 collaboration, The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J.859 (2018) 101 [1710.00845] [inspire]. · doi:10.3847/1538-4357/aab9bb
[48] Secrest, Nathan J.; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir, A Challenge to the Standard Cosmological Model, Astrophys. J. Lett., 937, L31 (2022) · doi:10.3847/2041-8213/ac88c0
[49] Secrest, Nathan J.; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques, A Test of the Cosmological Principle with Quasars, Astrophys. J. Lett., 908, L51 (2021) · doi:10.3847/2041-8213/abdd40
[50] R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, Astron. Astrophys.385 (2002) 337 [astro-ph/0111367] [inspire]. · doi:10.1051/0004-6361:20011817
[51] R. Teyssier, RAMSES: A new N-body and hydrodynamical code, Astrophysics Source Code Library (2010), ascl:1011.007.
[52] Tsujikawa, Shinji; Uddin, Kotub; Mizuno, Shuntaro; Tavakol, Reza; Yokoyama, Jun’ichi, Constraints on scalar-tensor models of dark energy from observational and local gravity tests, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.103009
[53] R.M. Wald, General Relativity, University of Chicago Press, Chicago, IL, U.S.A. (1984). · Zbl 0549.53001
[54] Weltman, A., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral., 37, e002 (2020) · doi:10.1017/pasa.2019.42
[55] Will, Clifford M., The Confrontation between general relativity and experiment, Living Rev. Rel., 4, 4 (2001) · Zbl 1024.83003 · doi:10.12942/lrr-2001-4
[56] Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo, COLA with scale-dependent growth: applications to screened modified gravity models, JCAP, 08 (2017) · Zbl 1515.83463 · doi:10.1088/1475-7516/2017/08/006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.