×

Bimodule monomorphism categories and RSS equivalences via cotilting modules. (English) Zbl 1440.16017

Summary: The monomorphism category \(\mathcal{M}(A, M, B)\) induced by a bimodule \({}_AM_B\) is the subcategory of {\(\Lambda\)}-mod consisting of \(\left[\begin{matrix} X \\ Y \end{matrix}\right]_\phi\) such that \(\phi : M \otimes_B Y \rightarrow X\) is a monic \(A\)-map, where \({\Lambda} = \left[\begin{matrix} A & M \\ 0 & B \end{matrix}\right]\), and \(A\), \(B\) are Artin algebras. In general, \(\mathcal{M}(A, M, B)\) is not the monomorphism category induced by quivers. It could describe the Gorenstein-projective \(\Lambda\)-modules. This monomorphism category is a resolving subcategory of \(\Lambda\)-mod if and only if \(M_B\) is projective. In this case, it has enough injective objects and Auslander-Reiten sequences, and can be also described as the left perpendicular category of a unique basic cotilting \(\Lambda\)-module. If \(M\) satisfies the condition (IP) (see Subsection 1.6), then the stable category of \(\mathcal{M}(A, M, B)\) admits a recollement of additive categories, which is in fact a recollement of singularity categories if \(\mathcal{M}(A, M, B)\) is a Frobenius category. Ringel-Schmidmeier-Simson equivalence between \(\mathcal{M}(A, M, B)\) and its dual is introduced. If \(M\) is an exchangeable bimodule, then an RSS equivalence is given by a \(\Lambda-\Lambda\) bimodule which is a two-sided cotilting \(\Lambda\)-module with a special property; and the Nakayama functor \(\mathcal{N}_{\Lambda}\) gives an RSS equivalence if and only if both \(A\) and \(B\) are Frobenius algebras.

MSC:

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras

References:

[1] Assem, I.; Simson, D.; Skowroński, A., Elements of the representation theory of associative algebras, vol. 1. techniques of representation theory, Lond. Math. Soc. Students Texts, vol. 65, (2006), Cambridge University Press · Zbl 1092.16001
[2] Auslander, M.; Reiten, I., Applications of contravariantly finite subcategories, Adv. Math., 86, 111-152, (1991) · Zbl 0774.16006
[3] Auslander, M.; Reiten, I.; Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Adv. Math., vol. 36, (1995), Cambridge Univ. Press · Zbl 0834.16001
[4] Auslander, M.; Smalø, S. O., Almost split sequences in subcategories, J. Algebra, 69, 426-454, (1981) · Zbl 0457.16017
[5] Beilinson, A. A.; Bernstein, J.; Deligne, P., Faisceaux perves, Astérisque, vol. 100, (1982), Soc. Math France · Zbl 0536.14011
[6] Beligiannis, A., Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, 288, 1, 137-211, (2005) · Zbl 1119.16007
[7] Birkhoff, G., Subgroups of abelian groups, Proc. Lond. Math. Soc. II, Ser., 38, 385-401, (1934) · Zbl 0010.34304
[8] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, Hamburg, 1987, 155 pp.; R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, Hamburg, 1987, 155 pp.
[9] Chen, X. W., The stable monomorphism category of a Frobenius category, Math. Res. Lett., 18, 1, 125-137, (2011) · Zbl 1276.18012
[10] Chen, X. W.; Zhang, P., Quotient triangulated categories, Manuscripta Math., 123, 167-183, (2007) · Zbl 1129.16011
[11] Enochs, E. E.; Jenda, O. M.G., Relative homological algebra, De Gruyter Exp. Math., vol. 30, (2000), Walter De Gruyter Co. · Zbl 0952.13001
[12] Feng, J.; Zhang, P., Types of Serre subcategories of Grothendieck categories · Zbl 1391.18019
[13] Franjou, V.; Pirashvili, T., Comparison of abelian categories recollement, Doc. Math., 9, 41-56, (2004) · Zbl 1060.18008
[14] Happel, D., Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc. Lecture Notes Ser., vol. 119, (1988), Cambridge Univ. Press · Zbl 0635.16017
[15] Happel, D., Reduction techniques for homological conjectures, Tsukuba J. Math., 17, 1, 115-130, (1993) · Zbl 0809.16021
[16] Happel, D.; Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274, 2, 399-443, (1982) · Zbl 0503.16024
[17] Iyama, O.; Kato, K.; Miyachi, J.-I., Recollement on homotopy categories and Cohen-Macaulay modules, J. K-Theory, 8, 3, 507-541, (2011) · Zbl 1251.18008
[18] Keller, B., Derived categories and universal problems, Comm. Algebra, 19, 699-747, (1991) · Zbl 0722.18002
[19] König, S., Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure Appl. Algebra, 73, 211-232, (1991) · Zbl 0760.16003
[20] Krause, H.; Solberg, Ø., Applications of cotorsion pairs, J. Lond. Math. Soc. (2), 68, 3, 631-650, (2003) · Zbl 1061.16006
[21] Kuhn, N. J., Generic representation theory of the finite general linear groups and the Steenrod algebra: II, K-Theory, 8, 395-428, (1994) · Zbl 0830.20065
[22] Kussin, D.; Lenzing, H.; Meltzer, H., Nilpotent operators and weighted projective lines, J. Reine Angew. Math., 685, 6, 33-71, (2010) · Zbl 1293.16008
[23] Kussin, D.; Lenzing, H.; Meltzer, H., Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math., 237, 194-251, (2013) · Zbl 1273.14075
[24] Luo, X. H.; Zhang, P., Monic representations and Gorenstein-projective modules, Pacific J. Math., 264, 1, 163-194, (2013) · Zbl 1317.16010
[25] Luo, X. H.; Zhang, P., Separated monic representations I: Gorenstein-projective modules, J. Algebra, 479, 1-34, (2017) · Zbl 1405.16022
[26] MacPherson, R.; Vilonen, K., Elementary construction of perverse sheaves, Invent. Math., 84, 403-436, (1986) · Zbl 0597.18005
[27] Neeman, A., Triangulated categories, Ann. Math. Stud., vol. 148, (2001), Princeton University Press Princeton, NJ · Zbl 0974.18008
[28] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 3, 227-248, (2004) · Zbl 1101.81093
[29] Parshall, B. J.; Scott, L. L., Derived categories, quasi-hereditary algebras and algebraic groups, Math. Lecture Notes Series, vol. 3, 1-105, (1988), Carleton Univ. · Zbl 0711.18002
[30] Psaroudakis, C.; Vitoria, J., Recollement of module categories, Appl. Categ. Structures, 22, 579-593, (2014) · Zbl 1305.18055
[31] Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Math., vol. 1099, (1984), Springer-Verlag · Zbl 0546.16013
[32] Ringel, C. M.; Schmidmeier, M., Submodules categories of wild representation type, J. Pure Appl. Algebra, 205, 2, 412-422, (2006) · Zbl 1147.16019
[33] Ringel, C. M.; Schmidmeier, M., The Auslander-Reiten translation in submodule categories, Trans. Amer. Math. Soc., 360, 2, 691-716, (2008) · Zbl 1154.16011
[34] Ringel, C. M.; Schmidmeier, M., Invariant subspaces of nilpotent operators I, J. Reine Angew. Math., 614, 1-52, (2008) · Zbl 1145.16005
[35] Ringel, C. M.; Zhang, P., Representations of quivers over the algebra of dual numbers, J. Algebra, 475, 327-360, (2017), Special Issue in Memory of Prof. J.A. Green, Edited by B. Srinivasan, M. Collins and G. Lehrer · Zbl 1406.16010
[36] Simson, D., Representation types of the category of subprojective representations of a finite poset over \(K [t] /(t^m)\) and a solution of a Birkhoff type problem, J. Algebra, 311, 1-30, (2007) · Zbl 1123.16010
[37] Simson, D., Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra, 424, 254-293, (2015) · Zbl 1312.16011
[38] Simson, D., Representation-finite Birkhoff type problems for nilpotent linear operators, J. Pure Appl. Algebra, (2018), in press · Zbl 1418.16008
[39] Wakamatsu, T., On modules with trivial self-extensions, J. Algebra, 114, 106-114, (1988) · Zbl 0646.16025
[40] Wang, M. X.; Lin, Z. Q., Recollement of additive quotinet categories
[41] Xiong, B. L.; Zhang, P., Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl., 11, 4, (2012) · Zbl 1261.16018
[42] Zhang, P., Monomorphism categories, cotilting theory, and Gorenstein-projective modules, J. Algebra, 339, 181-202, (2011) · Zbl 1275.16013
[43] Zhang, P., Gorenstein-projective modules and symmetric recollements, J. Algebra, 388, 65-80, (2013) · Zbl 1351.16012
[44] Zhang, P.; Xiong, B. L., Separated monic representations II: Frobenius subcategories and RSS equivalences · Zbl 1453.16012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.