×

Controlled convergence theorems for infinite dimension Henstock integrals of fuzzy valued functions based on weak equi-integrability. (English) Zbl 1382.26028

Summary: In this paper, we give the concept of weak Henstock equi-integrability for a sequence of fuzzy-number-valued functions. Under this notion, we investigate a new version of the Henstock’s Lemma of fuzzy-number-valued functions. Thus, it is possible to discuss the controlled convergence theorems of fuzzy Henstock integral in sense of Vitali covering. Moreover, we prove that a uniform version of Sklyarenko’s and Lusin’s integrability condition of fuzzy Henstock integrals together with pointwise convergence of a sequence of integrable functions is sufficient for a convergence theorem of fuzzy Henstock integrals. As the applications of the controlled convergence theorem, we discuss the existence theorems of generalized solution for a class of discontinuous fuzzy differential equations.

MSC:

26E50 Fuzzy real analysis
28E10 Fuzzy measure theory
Full Text: DOI

References:

[1] Akin, Ö.; Khaniyev, T.; Oruc, Ö.; Törksen, I. B., An algorithm for the solution of second order fuzzy initial value problems, Expert Syst. Appl., 40, 953-957 (2013)
[2] Aumann, R., Integrals of set-valued functions, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301
[3] Barros, L. C.; Pedro, F. S., Fuzzy differential equations with interactive derivative, Fuzzy Sets Syst., 309, 64-80 (2017) · Zbl 1368.34006
[4] Bede, B.; Gal, S., Quadrature ruls for integrals of fuzzy-number-valued functions, Fuzzy Sets Syst., 145, 359-380 (2004) · Zbl 1050.28009
[5] Bede, B.; Gal, S., Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equation, Fuzzy Sets Syst., 151, 581-599 (2005) · Zbl 1061.26024
[6] Bede, B.; Rudas, I. J.; Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Inf. Sci., 177, 1648-1662 (2007) · Zbl 1119.34003
[7] Bongiorno, B.; Di Piazza, L.; Musial, K., A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets Syst., 200, 36-47 (2012) · Zbl 1253.28010
[8] Cao, S. S., The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math., 16, 1, 35-40 (1992) · Zbl 0749.28007
[9] Cabral, V. M.; Barros, L. C., Fuzzy differential equation with completely correlated parameters, Fuzzy Sets Syst., 265, 86-98 (2015) · Zbl 1361.34004
[10] Chalco-Cano, Y.; Roman-Flores, H., On the new solution of fuzzy differential equations, Chaos Solitons Fractals, 38, 112-119 (2008) · Zbl 1142.34309
[11] Chalco-Cano, Y.; Roman-Flores, H., Comparation between some approaches to solve fuzzy differential equations, Fuzzy Sets Syst., 160, 1517-1527 (2009) · Zbl 1198.34005
[12] Chen, Minghao; Li, Daohua; Xue, Xiaoping, Periodic problems of first order uncertain dynamical systems, Fuzzy Sets Syst., 162, 67-78 (2011) · Zbl 1214.34003
[13] Chen, Minghao; Han, Chengshun, Some topological properties of solutions to fuzzy differential systems, Inf. Sci., 197, 207-214 (2012) · Zbl 1263.34006
[14] Chew, T. S.; Franciso, F., On \(x^\prime = f(t, x)\) and Henstock-Kurzwell integrals, Differ. Integral Equ., 4, 861-868 (1991) · Zbl 0733.34004
[15] Diamond, P.; Kloeden, P., Metric Space of Fuzzy Fets: Theory and Applications (1994), World Scientific: World Scientific Singapore · Zbl 0873.54019
[16] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Applications (1980), Academic Press: Academic Press New York · Zbl 0444.94049
[17] Goetschel, R.; Voxman, W., Elementary of fuzzy calculus, Fuzzy Sets Syst., 18, 31-43 (1986) · Zbl 0626.26014
[18] Gong, Zengtai; Wu, Congxin, Bound variation, absolute continuity and absolute integrability for fuzzy-number-valued functions, Fuzzy Sets Syst., 129, 83-94 (2002) · Zbl 1011.26020
[19] Gong, Zengtai, On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral, Fuzzy Sets Syst., 145, 381-393 (2004) · Zbl 1095.26019
[20] Gong, Zengtai; Shao, Yabin, Global existence and uniqueness of solutions for fuzzy differential equations under dissipative-type conditions, Comput. Math. Appl., 56, 2716-2723 (2008) · Zbl 1165.34303
[21] Gong, Zengtai; Shao, Yabin, The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions, Fuzzy Sets Syst., 160, 1528-1546 (2009) · Zbl 1180.26019
[22] Gong, Zengtai; Wang, Liangliang, The Henstock-Stieltjes integral for fuzzy-number-valued functions, Inf. Sci., 188, 276-297 (2012) · Zbl 1250.28014
[23] Henstock, R., Theory of Integration (1963), Butterworth: Butterworth London · Zbl 0154.05001
[24] Kaleva, O., Fuzzy differential equations, Fuzzy Sets Syst., 24, 301-319 (1987) · Zbl 0646.34019
[25] Musia, K., A decomposition theorem for Banach space valued fuzzy Henstock integral, Fuzzy Sets Syst., 259, 21-28 (2015) · Zbl 1335.28005
[26] Khastan, A.; Nieto, J. J.; Rodríguez-López, R. R., Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability, Inf. Sci., 222, 544-558 (2013) · Zbl 1293.34005
[27] Khastan, A.; Rodríguez-López, R. R., On the solutions to first order linear fuzzy differential equations, Fuzzy Sets Syst., 295, 114-135 (2016) · Zbl 1379.34004
[28] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[29] Klement, E. P.; Mesiar, R.; Pap, E., A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst., 18, 178-187 (2010)
[30] Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslov. Math. J., 7, 418-446 (1957) · Zbl 0090.30002
[31] Lakshmikantham, V.; Mohapatra, R. N., Theory of Fuzzy Differential Equations and Inclusions (2003), Taylor & Francis: Taylor & Francis London · Zbl 1072.34001
[32] Lebesgue, H., Integral, longueur, maire, Ann. Mat. Pura Appl., 7, 231-359 (1902) · JFM 33.0307.02
[33] Lee, P. Y., Lanzhou Lectures on Henstock Integration (1989), World Scientific: World Scientific Singapore, New Jersey, London, Hong Kong · Zbl 0699.26004
[34] Matloka, M., On fuzzy integral, (Proc. 2nd Polish Symp. on Interval and Fuzzy Math (1987), Wydawnicatwo Politechniki Poznanskiej: Wydawnicatwo Politechniki Poznanskiej Poznan), 167-170 · Zbl 0642.26015
[35] Mizukoshi, M. T.; Barros, L. C.; Chalco-Cano, Y.; Román-Flores, H.; Bassanezi, R. C., Fuzzy differential equations and the extension principle, Inf. Sci., 177, 3627-3635 (2007) · Zbl 1147.34311
[36] Nanda, S., On fuzzy integrals, Fuzzy Sets Syst., 32, 95-101 (1989) · Zbl 0671.28009
[37] Nieto, J. J.; Khastan, A.; Ivaz, K., Numerical solution of fuzzy differential equations under generalized differentiability, Nonlinear Anal. Hybrid Syst., 3, 700-707 (2009) · Zbl 1181.34005
[38] Pap, E., Null-Additive Set Functions (1995), Kluwer Academic · Zbl 0856.28001
[39] (Pap, E., Handbook of Measure Theory (2002), Elsevier) · Zbl 0998.28001
[40] Puri, M. L.; Ralescu, D. A., Differentials of fuzzy functions, J. Math. Anal. Appl., 91, 552-558 (1983) · Zbl 0528.54009
[41] Qiu, D.; Zhang, W.; Lu, C., On fuzzy differential equations in the quotient space of fuzzy numbers, Fuzzy Sets Syst., 295, 72-98 (2016) · Zbl 1385.34005
[42] Schwabik, S., Generalized Ordinary Differential Equations (1992), World Scientific: World Scientific Singapore · Zbl 0781.34003
[43] Schwabik, S.; Ye, Guoju, Topics in Banach Space Integration (2005), World Scientific: World Scientific Singapore · Zbl 1088.28008
[44] Seikkala, S., On the fuzzy initial value problem, Fuzzy Sets Syst., 24, 319-330 (1987) · Zbl 0643.34005
[45] Shao, Yabin; Zhang, Huanhuan, Fuzzy integral equations and strong fuzzy Henstock integrals, Abstr. Appl. Anal., 2013, Article 932696 pp. (2013) · Zbl 1419.34210
[46] Shao, Yabin; Zhang, Huanhuan, The strong fuzzy henstock integrals and discontinuous fuzzy differential equations, J. Appl. Math., 2013, Article 419701 pp. (2013) · Zbl 1419.34210
[47] Shao, Yabin; Zhang, Huanhuan, Existence of the solution for Discontinuous Fuzzy integro-differential equations and strong fuzzy Henstock integrals, Nonlinear Dyn. Syst. Theory, 14, 148-161 (2014) · Zbl 1419.34210
[48] Sklyarenko, V. A., On integration by parts for Burkill’s SCP-integral, Sb. Math., 112, 630-646 (1980) · Zbl 0447.26007
[49] Sugeno, M., Theory of Fuzzy Integrals and Its Applications (1974), Tokyo Institute of Technology, PhD thesis
[50] Sugeno, M., A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets Syst., 222, 1-17 (2013) · Zbl 1284.28018
[52] Villamizar-Roa, E. J.; Angulo-Castillo, V.; Chalco-Cano, Y., Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles, Fuzzy Sets Syst., 265, 24-38 (2015) · Zbl 1361.34005
[53] Vorobiev, D.; Seikkala, S., Towards the theory of fuzzy differential equations, Fuzzy Sets Syst., 125, 231-237 (2002) · Zbl 1003.34046
[54] Wang, Z.; Klir, G. J., Generalized Measure Theory (2009), Springer · Zbl 1184.28002
[55] Wu, Congxin; Yao, Xiaobo; Cao, S. S., The vector-valued integrals of Henstock and Denjoy, Sains Malays., 24, 13-32 (1995)
[56] Wu, Congxin; Gong, Zengtai, On Henstock integrals of interval-valued and fuzzy-number-valued functions, Fuzzy Sets Syst., 115, 377-391 (2000) · Zbl 0973.26009
[57] Wu, Congxin; Gong, Zengtai, On Henstock integrals of fuzzy-number-valued functions (I), Fuzzy Sets Syst., 120, 523-532 (2001) · Zbl 0984.28010
[58] Wu, Hsing-Chung, Evaluate fuzzy Riemann integrals using the Monte Carlo method, J. Math. Anal. Appl., 264, 324-343 (2001) · Zbl 0993.65004
[59] Xue, Xiaoping; Fu, Yongqiang, Carathödory solution of fuzzy differential equations, Fuzzy Sets Syst., 125, 239-243 (2002) · Zbl 1006.34054
[60] Zadeh, L., Fuzzy sets, Inf. Control, 3, 338-353 (1965) · Zbl 0139.24606
[61] Ziari, S.; Bica, A. M., New error estimate in the iterative numerical method for nonlinear fuzzy Hammerstein-Fredholm integral equations, Fuzzy Sets Syst., 295, 136-152 (2016) · Zbl 1377.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.