×

The characterizations of Hardy-Sobolev spaces by fractional square functions related to Schrödinger operators. (English) Zbl 1446.42034

Summary: Let \(L = -\Delta + V\) be a Schrödinger operator, where the potential \(V\) satisfies the reverse Hölder condition. In this paper, via the heat semigroup \(e^{-tL}\) and the Poisson semigroup \(e^{-t\sqrt{L}}\), we introduce several classes of fractional square functions associated with \(L\) including the Litttlewood-Paley \(g\)-function, the area integral and the \(g_\lambda^*\)-function, respectively. By the regularities of semigroup, we establish several square function characterizations of the Hardy space and the Hardy-Sobolev space related to the Schrödinger operator.

MSC:

42B35 Function spaces arising in harmonic analysis
47A60 Functional calculus for linear operators
42B25 Maximal functions, Littlewood-Paley theory
35J10 Schrödinger operator, Schrödinger equation
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] Auscher, P.,E. Russ, andP. Tchamitchian: Hardy Sobolev spaces on strongly Lipschitz domains ofRn. - J. Funct. Anal. 218, 2005, 54-109. · Zbl 1073.46022
[2] Auscher, P., andP. Tchamitchian: Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). - Ann. Inst. Fourier (Grenoble) 45, 1995, 721-778. · Zbl 0819.35028
[3] Badr, N., andF. Bernicot: Abstract Hardy-Sobolev spaces and interpolation. - J. Funct. Anal. 259, 2010, 1169-1208. · Zbl 1203.46017
[4] Badr, N., andG. Dafni: Maximal characterization of Hardy-Sobolev spaces on manifolds. Contemp. Math. 545, 2011, 13-21. · Zbl 1235.42014
[5] Betancor, J.,J. Fariña,L. Rodríguez-Mesa,R. Testoni, andJ. Torrea: Fractional square functions and potential spaces, II. - Acta Math. Sin. (English series) 33, 2015, 1759-1774. · Zbl 1327.42020
[6] Cao, J., andD. Yang: Hardy spacesHLp(Rn)associated with operators satisfyingk-Davies- Gaffney estimates. - Sci. China Math. 55, 2012, 1403-1440. · Zbl 1266.42057
[7] Cao, J.,D.-C. Chang,D. Yang, andS. Yang: Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. - Commun. Pure Appl. Anal. 13, 2014, 1435-1463. · Zbl 1408.42011
[8] Chang, D. C.,G. Dafni, andE. M. Stein: Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain inRn. - Trans. Amer. Math. Soc. 351, 1999, 1605-1661. · Zbl 0917.35028
[9] Cho, Y., andJ. Kim: Atomic decomposition on Hardy-Sobolev spaces. - Studia Math. 177, 2006, 25-42. · Zbl 1133.42040
[10] Coifman, R.,P.-L. Lions,Y. Meyer, andS. Semmes: Compensated compactness and Hardy space. - J. Math. Pures Appl. 9, 1993, 247-286. · Zbl 0864.42009
[11] Coifman, R.,Y. Meyer, andE. M. Stein: Some new function spaces and their applications to harmonic analysis. - J. Funct. Anal. 62, 1985, 304-335. · Zbl 0569.42016
[12] DeVore, R., andR. Sharpley: Maximal functions measuring smoothness. - Mem. Amer. Math. Soc. 47:293, 1984. · Zbl 0529.42005
[13] Duong, X., andL. Yan: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. - J. Amer. Math. Soc. 18, 2005, 943-973. · Zbl 1078.42013
[14] Dziubański, J.: Spectral multiplier theorem forH1spaces associated with some Schrödinger operators. - Proc. Amer. Math. Soc. 12, 1999, 3605-3613. · Zbl 0934.42010
[15] Dziubański, J.,G. Garrigós,T. Martínez,J. Torrea, andJ. Zienkiewicz: BMO spaces related to Schrödinger operator with potential satisfying reverse Hölder inequality. Math. Z. 249, 2005, 329-356. · Zbl 1136.35018
[16] Dziubański, J., andJ. Zienkiewicz: Hardy spaceH1associated to Schrödinger operator with potential satisfying reverse Hölder inequality. - Rev. Mat. Iberoam. 15, 1999, 279-296. · Zbl 0959.47028
[17] Dziubański, J., andJ. Zienkiewicz:Hpspaces for Schrödinger operators. - In: Fourier Analysis and Ralated Topics, Vol. 56, Banach Center Publications, 2002, 45-53. · Zbl 1039.42018
[18] Fefferman, C., andE. M. Stein:Hpspaces of several variables. - Acta Math. 129, 1972, 137-193. · Zbl 0257.46078
[19] Fefferman, C., andE. M. Stein: Hardy spaces on homogeneous groups. - Princeton University Press, 1982. · Zbl 0508.42025
[20] Gatto, A.,C. Segovia, andJ. Jimnez: On the solution of the equation△mF=ffor f∈Hp. - In: Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 1983, 394-415. · Zbl 0504.35040
[21] Hofmann, S.,G. Lu,D. Mitrea,M. Mitrea, andL. Yan: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. - Mem. Amer. Math. Soc. 214:1007, 2011. · Zbl 1232.42018
[22] Huang, J.: Hardy-Sobolev spaces associated with Hermite expansions and interpolation. Nonlinear Anal. 157, 2017, 104-122. · Zbl 1369.42020
[23] Huang, J.,W. Li, andY. Wang: Hardy-Sobolev spaces associated with twisted convolution. - J. Funct. Spaces, Art. ID 5692746, 2017, 1-7. · Zbl 1383.46028
[24] Janson, S.: On functions with derivatives inH1. - In: Harmonic analysis and partial differential equations (El Escorial, 1987), Springer Lecture Notes in Math. 1384, 1989, 193-201. · Zbl 0676.46042
[25] Jiang, R., andD. Yang: Orlicz-Hardy spaces associated with operators. - Sci. China Ser. A 52, 2009, 1042-1080. · Zbl 1177.42018
[26] Jiang, R., andD. Yang: Orlicz-Hardy spaces associated with operators satisfying Davies- Gaffney estimates. - Commun. Contemp. Math. 13, 2011, 331-373. · Zbl 1221.42042
[27] Jiang, R., andD. Yang: Predual spaces of Banach completions of Orlicz-Hardy spaces associated with operators. - J. Fourier Anal. Appl. 17, 2011, 1-35. · Zbl 1213.42079
[28] Koskela, P., andE. Saksman: Pointwise characterizations of Hardy-Sobolev functions. Math. Res. Lett. 15, 2008, 727-744. · Zbl 1165.46013
[29] Lin, C.,H. Liu, andY. Liu: Hardy spaces associated with Schrödinger operators on the Heisenberg group. - arXiv:1106.4960 [math.AP].
[30] Lou, Z., andS. Yang: An atomic decomposition for the Hardy Sobolev space. - Taiwan J. Math. 11, 2007, 1167-1176. · Zbl 1221.42038
[31] Ma, T.,P. Stinga,J. Torrea, andC. Zhang: Regularity properties of Schrödinger operaors. - J. Math. Anal. Appl. 388, 2012, 817-837. · Zbl 1232.35039
[32] Miyachi, A.: Hardy-Sobolev spaces and maximal functions. - J. Math. Soc. Japan 42, 1990, 73-90. · Zbl 0677.42017
[33] Orobitg, J.: Spectral synthesis in spaces of functions with derivatives inH1. - In: Harmonic analysis and partial differential equations (El Escorial, 1987), Springer Lecture Notes in Math. 1384, 1989, 202-206. · Zbl 0699.46018
[34] Segovia, C., andR. Wheeden: On certain fractional area integrals. - J. Math. Mech. 19, 1969/1970, 247-262. · Zbl 0181.12403
[35] Strichartz, R.:HpSobolev spaces. - Colloq. Anal. 60-61:1, 1990, 129-139. · Zbl 0782.46034
[36] Torchinsky, A.: Restrictions and extensions of potentials ofHpdistributions. - J. Funct. Anal. 31, 1979, 24-41. · Zbl 0402.46034
[37] Torrea, J., andC. Zhang: Fractional vector-valued Littlewood-Paley-Stein theory for semigroups. - Proc. Roy. Soc. Edinburgh 144A, 2014, 637-667. · Zbl 1302.46008
[38] Yang, D., andY. Zhou: Localized Hardy spacesH1related to admissible functions on RD-spaces and applications to Schrödinger operators. - Trans. Amer. Math. Soc. 363, 2011, 1197-1239. · Zbl 1217.42044
[39] Yang, D., andJ. Zhang: Variable Hardy spaces associated with operators satisfying Davies- Gaffney estimates on metric measure spaces of homogeneous type. - Ann. Acad. Sci. Fenn. Math. 43, 2018, 47-87. · Zbl 1395.42055
[40] Yang, D., andS. Yang: Musielak-Orlicz-Hardy spaces associated with operators and their applications. - J. Geom. Anal. 24, 2014, 495-570. · Zbl 1302.42033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.