×

Elastic metrics on spaces of Euclidean curves: theory and algorithms. (English) Zbl 07846489

Summary: A main goal in the field of statistical shape analysis is to define computable and informative metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space. The approach taken in the elastic shape analysis framework is to define such a metric by starting with a reparametrization-invariant Riemannian metric on the space of parametrized shapes and inducing a metric on the quotient by the group of diffeomorphisms. This quotient metric is computed, in practice, by finding a registration of two shapes over the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric is frequently chosen from a two-parameter family of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient because, for several parameter choices, they are known to be locally isometric to Riemannian metrics for which one is able to solve the geodesic boundary problem explicitly – well-known examples of these local isometries include the complex square root transform of L. Younes et al. [Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 19, No. 1, 25–57 (2008; Zbl 1142.58013)] and square root velocity (SRV) transform of A. Srivastava et al. [IEEE transactions on pattern analysis and machine intelligence 33, No. 7, 1415–1428 (2010)]. In this paper, we show that the SRV transform extends to elastic metrics for all choices of parameters, for curves in any dimension, thereby fully generalizing the work of many authors over the past two decades. We give a unified treatment of the elastic metrics: we extend results of A. Trouvé and L. Younes [SIAM J. Control Optim. 39, No. 4, 1112–1135 (2000; Zbl 0983.49009)], M. Bruveris [SIAM J. Math. Anal. 48, No. 6, 4335–4354 (2016; Zbl 1357.58005)] as well as S. Lahiri et al. [Geom. Imaging Comput. 2, No. 3, 133–186 (2015; Zbl 1403.94020)] on the existence of solutions to the registration problem, we develop algorithms for computing distances and geodesics, and we apply these algorithms to metric learning problems, where we learn optimal elastic metric parameters for statistical shape analysis tasks.

MSC:

53A04 Curves in Euclidean and related spaces
53Z50 Applications of differential geometry to data and computer science
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68T05 Learning and adaptive systems in artificial intelligence

Software:

GitHub

References:

[1] Bauer, M.; Bruveris, M.; Harms, P.; Michor, PW, Vanishing geodesic distance for the Riemannian metric with geodesic equation the kdv-equation, Ann. Glob. Anal. Geom., 41, 4, 461-472, 2012 · Zbl 1246.58005 · doi:10.1007/s10455-011-9294-9
[2] Bauer, M.; Bruveris, M.; Marsland, S.; Michor, PW, Constructing reparameterization invariant metrics on spaces of plane curves, Differ. Geom. Appl., 34, 139-165, 2014 · Zbl 1291.58002 · doi:10.1016/j.difgeo.2014.04.008
[3] Bauer, M.; Bruveris, M.; Michor, PW, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vis., 50, 1, 60-97, 2014 · Zbl 1310.58005 · doi:10.1007/s10851-013-0490-z
[4] Bauer, M.; Harms, P.; Preston, SC, Vanishing distance phenomena and the geometric approach to SQG, Arch. Ration. Mech. Anal., 235, 3, 1445-1466, 2020 · Zbl 1434.35084 · doi:10.1007/s00205-019-01449-7
[5] Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data (2013). arXiv preprint arXiv:1306.6709
[6] Bruveris, M.: The \({L}^2\)-metric on \({C}^\infty ({M}, {N}) (2018)\). arXiv:1804.00577
[7] Bruveris, M., Optimal reparametrizations in the square root velocity framework, SIAM J. Math. Anal., 48, 6, 4335-4354, 2016 · Zbl 1357.58005 · doi:10.1137/15M1014693
[8] Charon, N., Younes, L.: Shape spaces: from geometry to biological plausibility (2022). arXiv preprint arXiv:2205.01237
[9] Ciarlet, PG, Three-Dimensional Elasticity, 1988, Amsterdam: Elsevier, Amsterdam · Zbl 0648.73014
[10] Cohn, DL, Measure Theory, 2013, Springer · Zbl 1292.28002 · doi:10.1007/978-1-4614-6956-8
[11] Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 209-216 (2007)
[12] Dryden, IL; Mardia, K., Statistical Shape Analysis, 1998, New York: Wiley, New York · Zbl 0901.62072
[13] Falconer, KJ, The Geometry of Fractal Sets, 1985, Cambridge: Cambridge University Press, Cambridge · Zbl 0587.28004 · doi:10.1017/CBO9780511623738
[14] Federer, H., Geometric Measure Theory, 1969, Berlin: Springer, Berlin · Zbl 0176.00801
[15] Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Spectral, probabilistic, and deep metric learning: tutorial and survey (2022). arXiv preprint arXiv:2201.09267
[16] Ghojogh, B., Karray, F., Crowley, M.: Fisher and kernel fisher discriminant analysis: tutorial (2019). arXiv preprint arXiv:1906.09436
[17] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning, 2016, MIT Press · Zbl 1373.68009
[18] Gorczowski, K.; Styner, M.; Jeong, J.; Marron, J.; Piven, J.; Hazlett, H.; Pizer, S.; Gerig, G., Multi-object analysis of volume, pose, and shape using statistical discrimination, IEEE Trans. Pattern Anal. Mach. Intell., 32, 4, 652-666, 2010 · doi:10.1109/TPAMI.2009.92
[19] Grenander, U.; Miller, MI, Computational anatomy: an emerging discipline, Quart. Appl. Math. LV, I, 4, 617-694, 1998 · Zbl 0952.92016 · doi:10.1090/qam/1668732
[20] Gurtin, M.E.: An Introduction to Continuum Mechanics (1981) · Zbl 0559.73001
[21] Hartman, E., Sukurdeep, Y., Charon, N., Klassen, E., Bauer, M.: Supervised deep learning of elastic SRV distances on the shape space of curves. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4425-4433 (2021)
[22] Heitz, M.; Bonneel, N.; Coeurjolly, D.; Cuturi, M.; Peyré, G., Ground metric learning on graphs, J. Math. Imaging Vis., 63, 1, 89-107, 2021 · Zbl 1516.68079 · doi:10.1007/s10851-020-00996-z
[23] Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: European Conference on Computer Vision, pp. 804-817. Springer (2012)
[24] Josephy, M., Composing functions of bounded variation, Proc. Am. Math. Soc., 83, 2, 354-356, 1981 · Zbl 0475.26005 · doi:10.1090/S0002-9939-1981-0624930-9
[25] Kaya, M.; Bilge, HŞ, Deep metric learning: a survey, Symmetry, 11, 9, 1066, 2019 · doi:10.3390/sym11091066
[26] Kulis, B., Metric learning: a survey, Found. Tends Mach. Learn., 5, 4, 287-364, 2013 · Zbl 1278.68014 · doi:10.1561/2200000019
[27] Lahiri, S.; Robinson, D.; Klassen, E., Precise matching of pl curves in \(\mathbb{R}^n\) in the square root velocity framework, Geom. Imaging Comput., 2, 3, 133-186, 2015 · Zbl 1403.94020 · doi:10.4310/GIC.2015.v2.n3.a1
[28] Le, T., Cuturi, M.: Unsupervised Riemannian metric learning for histograms using Aitchison transformations. In: International Conference on Machine Learning, pp. 2002-2011. PMLR (2015)
[29] Martins Bruveris. libSRV. Available at https://github.com/martinsbruveris/libsrvf
[30] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, 1999, Cambridge: Cambridge University Press, Cambridge · Zbl 0911.28005
[31] Mavridis, L., Venkatraman, V., Ritchie, D., Morikawa, N., Andonov, R., Cornu, A., Malod-Dognin, N., Nicolas, J., Temerinac-Ott, M., Reisert, M., Burkhardt, H., Axenopoulos, A., Daras, P.: Shrec’10 track: protein model classification, pp. 117-124 (2010)
[32] Michor, PW; Mumford, D., An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23, 1, 74-113, 2007 · Zbl 1116.58007 · doi:10.1016/j.acha.2006.07.004
[33] Mio, W.; Srivastava, A.; Joshi, S., On shape of plane elastic curves, Int. J. Comput. Vis., 73, 3, 307-324, 2007 · Zbl 1477.68398 · doi:10.1007/s11263-006-9968-0
[34] Mumford, DB; Michor, PW, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8, 1, 1-48, 2006 · Zbl 1101.58005 · doi:10.4171/jems/37
[35] Needham, T., Kähler structures on spaces of framed curves, Ann. Glob. Anal. Geom., 54, 1, 123-153, 2018 · Zbl 1396.58012 · doi:10.1007/s10455-018-9595-3
[36] Needham, T., Knot types of generalized Kirchhoff rods, J. Knot Theory Ramifications, 28, 11, 1940010, 2019 · Zbl 1431.57010 · doi:10.1142/S0218216519400108
[37] Needham, T., Shape analysis of framed space curves, J. Math. Imaging Vis., 61, 8, 1154-1172, 2019 · Zbl 1468.68267 · doi:10.1007/s10851-019-00895-y
[38] Needham, T.; Kurtek, S., Simplifying transforms for general elastic metrics on the space of plane curves, SIAM J. Imag. Sci., 13, 1, 445-473, 2020 · Zbl 1480.68016 · doi:10.1137/19M1265132
[39] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, 2003, Springer · Zbl 1026.76001 · doi:10.1007/b98879
[40] Srivastava, A.; Klassen, E., Functional and Shape Data Analysis, 2016, Berlin: Springer, Berlin · Zbl 1376.62003 · doi:10.1007/978-1-4939-4020-2
[41] Srivastava, A.; Klassen, E.; Joshi, SH; Jermyn, IH, Shape analysis of elastic curves in Euclidean spaces, IEEE Trans. Pattern Anal. Mach. Intell., 33, 7, 1415-1428, 2010 · doi:10.1109/TPAMI.2010.184
[42] Sundaramoorthi, G.; Yezzi, A.; Mennucci, AC, Sobolev active contours, Int. J. Comput. Vis., 73, 3, 345-366, 2007 · Zbl 1477.68427 · doi:10.1007/s11263-006-0635-2
[43] Trouvé, A., Younes, L.: Diffeomorphic matching problems in one dimension: designing and minimizing matching functionals. In: European Conference on Computer Vision, pp. 573-587. Springer (2000)
[44] Trouvé, A.; Younes, L., On a class of diffeomorphic matching problems in one dimension, SIAM J. Control Optim., 39, 1112-1135, 2000 · Zbl 0983.49009 · doi:10.1137/S036301299934864X
[45] Vemulapalli, R., Jacobs, D.W.: Riemannian metric learning for symmetric positive definite matrices (2015). arXiv preprint arXiv:1501.02393
[46] Wurzbacher, T.; Khesin, B.; Michor, PW, The flow completion of burgers’ equation. Infinite dimensional groups and manifolds. Editor, IRMA Lect. Math. Theor. Phys., 5, 17-26, 2004 · Zbl 1062.37100
[47] Xing, E.; Jordan, M.; Russell, SJ; Ng, A., Distance metric learning with application to clustering with side-information, Adv. Neural Inf. Process. Syst., 15, 30, 2002
[48] Yang, L.; Jin, R., Distance metric learning: a comprehensive survey, Michigan State Univ., 2, 2, 4, 2006
[49] Ying, Y.; Li, P., Distance metric learning with eigenvalue optimization, J. Mach. Learn. Res., 13, 1, 1-26, 2012 · Zbl 1283.68309
[50] Younes, L., Computable elastic distances between shapes, SIAM J. Appl. Math., 58, 2, 565-586, 1998 · Zbl 0907.68158 · doi:10.1137/S0036139995287685
[51] Younes, L.; Michor, PW; Shah, JM; Mumford, DB, A metric on shape space with explicit geodesics, Rendiconti Lincei, 19, 1, 25-57, 2008 · Zbl 1142.58013
[52] Zahn, CT; Roskies, RZ, Fourier descriptors for plane closed curves, IEEE Trans. Comput., 21, 3, 25, 1972 · Zbl 0231.68042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.