×

Deviatoric stress waves due to rheology in incompressible thermoviscoelastic solid medium with small strain, small deformation physics. (English) Zbl 1522.74056

Summary: This paper demonstrates existence of deviatoric stress waves in thermoviscoelastic (TVE) solid continua due to rheology in addition to the presence of usual deviatoric stress waves purely due to elasticity of the solid continua. The physical mechanisms that enable existence of deviatoric stress waves due to rheology in TVE solid continua are identified. Evolutions of deviatoric stress waves due to rheology are presented. Propagation, reflection, transmission, and interaction of such waves in conjunction with usual elastic stress waves are presented. The parameters controlling the rheological deviatoric stress waves and the speed of propagation of composite deviatoric stress waves due to rheology and elasticity are identified, discussed and illustrated through model problem studies. Mathematical model for the TVE solids in \(\mathbb{R}^1\) is constructed using conservation and balance laws of classical continuum mechanics in \(\mathbb{R}^3\) and the constitutive theories that are derived using entropy inequality and representation theorem. Model problems and their solutions are also presented to illustrate the validity of the concepts presented in the paper.

MSC:

74J10 Bulk waves in solid mechanics
74F05 Thermal effects in solid mechanics
74D05 Linear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Shariyat, M.; Lavasani, SMH; Khaghani, M., Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent fgm cylinders, using a second-order point-collocation method, Appl Math Model, 34, 898-918 (2010) · Zbl 1185.74011 · doi:10.1016/j.apm.2009.07.007
[2] Berezovski, A.; Berezovski, M.; Engelbrecht, J., Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media, Mater Sci Eng A, 418, 364-369 (2006) · doi:10.1016/j.msea.2005.12.005
[3] Bird RB, Armstrong RC, Hassager O(1987) Dynamics od polymeric liquids, Volumes 1 and 2, Fluid Mechanics, Second Edition. Wiley
[4] Engelbrecht, J.; Berezovski, A.; Salupere, A., Nonlinear deformation waves in solids and dispersion, Wave Motion, 44, 493-500 (2007) · Zbl 1231.74247 · doi:10.1016/j.wavemoti.2007.02.006
[5] Engelbrecht, J., Nonlinear Wave Processes of Deformation in Solids (1983), London: Pitman Publishing, London · Zbl 0574.73044
[6] Fosdick, R.; Ketema, Y.; Yu, JH, A non-linear oscillator with history dependent force, Int J Non-Linear Mech, 33, 3, 447-459 (1997) · Zbl 0907.70013 · doi:10.1016/S0020-7462(97)00021-8
[7] Gei, M.; Bigoni, D.; Franceschini, G., Thermoelastic small-amplitude wave propagation in nonlinear elastic multilayers, Math Mech Solids, 9, 555-568 (2004) · Zbl 1067.74014 · doi:10.1177/1081286504038675
[8] Graham, RA, Solids Under High-Pressure Shock Compression (1992), New York: Springer-Verlag, New York
[9] Surana, KS; Knight, J.; Reddy, JN, Nonlinear waves in solid continua with finite deformation, Am J Comput Math, 5, 345 (2015) · doi:10.4236/ajcm.2015.53032
[10] Surana, KS; Kitchen, MD, Stress waves in polymeric fluids, Am J Comput Math, 12, 87 (2022) · doi:10.4236/ajcm.2022.121007
[11] Surana KS, Moody T, Reddy JN (2014) Ordered rate constitutive theories in lagrangian description for thermoviscoelastic solids with memory. Actamechanica · Zbl 1326.74007
[12] Surana, KS; Reddy, JN, The Finite Element Method for Initial Value Problems (2018), Boca Raton, FL: CRC/Taylor and Francis, Boca Raton, FL · Zbl 1397.65003
[13] Landau, LD; Lifshitz, EM, Theory of Elasticity (1986), New York: Pergamon Press, New York
[14] Li, Y.; Vandewoestyne, B.; Abeele, KVD, A nodal discontinuous galerkin finite element method for nonlinear elastic wave propagation, J Acoust Soc Am, 131, 5, 3650-3663 (2012) · doi:10.1121/1.3693654
[15] de Lima, WJN; Hamilton, MF, Finite-amplitude waves in isotropic elastic plates, J Sound Vib, 265, 819-839 (2003) · doi:10.1016/S0022-460X(02)01260-9
[16] de Lima, WJN; Hamilton, MF, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross sectional area, Wave Motion, 41, 1-11 (2005) · Zbl 1189.74074 · doi:10.1016/j.wavemoti.2004.05.004
[17] Nucera, C.; di Scalea, FL, Nonlinear semianalytical finite-element algorithm for the analysis of internal resonance conditions in complex waveguides, J Eng Mech, 140, 3, 502-522 (2014)
[18] Renton, JD, Applied elasticity: matrix and tensor analysis of elastic continua (1987), Chichester: Ellis Horwood, Chichester · Zbl 0703.73015
[19] Rivlin, RS, Stress relaxation in incompressible elastic materials at constant deformation, Q Appl Math, 14, 1, 83-89 (1956) · Zbl 0072.19202 · doi:10.1090/qam/79415
[20] Shariyat, M., Nonlinear transient stress and wave propagation analyses of the fgm thick cylinders, employing a unified generalized thermoelasticity theory, Int J Mech Sci, 65, 24-37 (2012) · doi:10.1016/j.ijmecsci.2012.09.001
[21] Shariyat, M.; Khaghani, M.; Lavasani, SMH, Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties, Eur J Mech A/Solids, 29, 378-391 (2010) · Zbl 1478.74041 · doi:10.1016/j.euromechsol.2009.10.007
[22] Smith, GF, On isotropic integrity bases, Arch Ration Mech Anal, 18, 282-292 (1965) · Zbl 0129.00902 · doi:10.1007/BF00251667
[23] Smith, GF, On a fundamental error in two Papers of C.C. Wang, ‘On representations for isotropic functions, Part I and Part II’, Arch Ration Mech Anal, 36, 161-165 (1970) · Zbl 0327.15029 · doi:10.1007/BF00272240
[24] Smith, GF, On isotropic functions of symmetric tensors, Skew-symmetric tensors and vectors, Int J Eng Sci, 9, 899-916 (1971) · Zbl 0233.15021 · doi:10.1016/0020-7225(71)90023-1
[25] Spencer AJM (1971) Theory of Invariants. Chapter 3 ‘Treatise on Continuum Physics, I’ Edited by A. C. Eringen,. Academic Press
[26] Spencer, AJM; Rivlin, RS, The theory of matrix polynomials and its application to the mechanics of isotropic continua, Arch Ration Mech Anal, 2, 309-336 (1959) · Zbl 0095.25101 · doi:10.1007/BF00277933
[27] Spencer, AJM; Rivlin, RS, Further results in the theory of matrix polynomials, Arch Ration Mech Anal, 4, 214-230 (1960) · Zbl 0095.25103 · doi:10.1007/BF00281388
[28] Surana, KS, Adv Mech Continua (2015), Boca Raton, FL: CRC/Taylor and Francis, Boca Raton, FL
[29] Surana KS (2022) Classical continum mechanics, 2nd edn. CRC/Taylor and Francis, Boca Raton, FL · Zbl 1487.74003
[30] Surana, KS; Nunez, D.; Reddy, JN; Romkes, A., Rate constitutive theory for ordered thermoviscoelastic fluids-polymers, J Contin Mech Thermodyn, 26, 143 (2014) · Zbl 1343.82070 · doi:10.1007/s00161-013-0295-8
[31] Surana, KS; Maduri, R.; Reddy, JN, One dimensional elastic wave propagation in periodically laminated composites using h; p; k framework and stls finite element processes, Mech Adv Mater Struct, 13, 161-196 (2006) · doi:10.1080/15376490500451809
[32] Wang, CC, On representations for isotropic functions, part I, Arch Ration Mech Anal, 33, 249 (1969) · Zbl 0332.15012 · doi:10.1007/BF00281278
[33] Wang, CC, On representations for isotropic functions, part II, Arch Ration Mech Anal, 33, 268 (1969) · Zbl 0332.15012 · doi:10.1007/BF00281279
[34] Wang, CC, A new representation theorem for isotropic functions, Part I and Part II, Arch Ration Mech Anal, 36, 166-223 (1970) · Zbl 0327.15030 · doi:10.1007/BF00272241
[35] Wang, CC, Corrigendum to ‘Representations for isotropic functions’, Arch Ration Mech Anal, 43, 392-395 (1971) · doi:10.1007/BF00252004
[36] Yu, STJ; Yang, L.; Lowe, R.; Bechtel, SE, Numerical simulation of linear and nonlinear waves in hypoelastic solids by the CESE method, Wave Motion, 47, 168-182 (2010) · Zbl 1231.74249 · doi:10.1016/j.wavemoti.2009.09.005
[37] Yu, YM; Lim, CW, Nonlinear constitutive model for axisymetric bending of annular graphene-like nanoplate with gradient elasticity enhancement effects, J Eng Mech, 139, 8, 1025-1035 (2013)
[38] Zarembo, LK; Krasil’nikov, VA, Nonlinear phenomena in the propagation of elastic waves in solids, Soviet Phys Uspekhi, 13, 6, 778-797 (1970) · doi:10.1070/PU1971v013n06ABEH004281
[39] Zheng, QS, On the representations for isotropic vector-valued, symmetric tensor-valued and Skew-symmetric tensor-valued functions, Int J Eng Sci, 31, 1013-1024 (1993) · Zbl 0781.15011 · doi:10.1016/0020-7225(93)90109-8
[40] Zheng, QS, On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors, Int J Eng Sci, 31, 1399-1453 (1993) · Zbl 0780.73008 · doi:10.1016/0020-7225(93)90005-F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.