×

A unified variational framework for the space discontinuous Galerkin method for elastic wave propagation in anisotropic and piecewise homogeneous media. (English) Zbl 1440.74167

Summary: We present a unified multidimensional variational framework for the space discontinuous Galerkin method for elastic wave propagation in anisotropic and piecewise homogeneous media. Based on an elastic wave oriented formulation and using a tensorial formalism, the proposed framework allows a better understanding of the physical meaning of the terms involved in the discontinuous Galerkin method. The unified variational framework is written for first-order velocity-stress wave equations. An uncoupled upwind numerical flux and two coupled upwind numerical fluxes using respectively the Voigt and the Reuss averages of elastic moduli are defined. Two numerical fluxes that are exact solutions of the Riemann problem on physical interfaces are also developed and analyzed in the 1D case. The implemented solvers are then applied to different elastic media, especially to polycrystalline materials that present a particular case of piecewise homogeneous media. The use of the three upwind numerical fluxes, which only solve approximately the Riemann problem at element interfaces, is investigated.

MSC:

74J05 Linear waves in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74B05 Classical linear elasticity

Software:

HE-E1GODF

References:

[1] (Cockburn, B.; Karniadakis, G.; Shu, C.-W., Discontinuous Galerkin Methods. Theory, Computation and Applications. Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, vol. 11 (2000), Springer-Verlag), ISBN: 13:978-3-642-64098-8
[2] Käser, M.; Dumbser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two-dimensional isotropic case with external source terms, Geophys. J. Int., 166, 2, 855-877 (2006)
[3] Dumbser, M.; Käser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes II: The three-dimensional isotropic case, Geophys. J. Int., 167, 1, 319-336 (2006)
[4] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Springer Publishing Company, Incorporated
[5] de la Puente, J.; Käser, M.; Dumbser, M.; Igel, H., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes IV: Anisotropy, Geophys. J. Int., 169, 3, 1210-1228 (2007)
[6] Etienne, V.; Chaljub, E.; Virieux, J.; Glinsky, N., An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophys. J. Int., 183, 1, 941-962 (2010)
[7] Wilcox, L.; Stadler, G.; Burstedde, C.; Ghattas, O., A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, J. Comput. Phys., 229, 9373-9396 (2010) · Zbl 1427.74071
[8] Stanglmeiera, M.; Nguyena, N.; Perairea, J.; Cockburn, B., An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation, Comput. Methods Appl. Mech. Engrg., 300, 748-769 (2010) · Zbl 1423.76280
[9] LeVeque, R., (Finite Volume Methods for Hyperbolic Problems. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press) · Zbl 1010.65040
[10] Titarev, V. A.; Toro, E. F., ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[11] Moczo, P.; Kristek, J.; Vavrycuk, V.; Archuleta, R. J.; Halada, L., 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am., 92, 8, 3042-3066 (2002)
[12] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1999), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0923.76004
[13] Arnold, D.; Brezzi, F.; Cockburn, B.; Marini, L., Unified analysis of discontinuous galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[14] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2002) · Zbl 1065.76135
[15] Hughes, T. J.; Hulbert, G., Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput. Methods Appl. Mech. Engrg., 66, 339-363 (1988) · Zbl 0616.73063
[16] Johnson, C., Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Eng., 107, 117-129 (1993) · Zbl 0787.65070
[17] Li, M.; Wiberg, N., Implementation and adaptivity of space-time finite element method for structural dynamics, Comput. Methods Appl. Mech. Engrg., 156, 211-229 (1998) · Zbl 0960.74065
[18] Tie, B.; Aubry, D., Adaptive time discontinuous Galerkin method for numerical modeling of wave propagation in shell and 3D structures, Eur. J. Comput. Mech., 15, 6, 729-757 (2006) · Zbl 1208.74167
[19] Leclère, J.-M., Parallel and Adaptive FE Modeling of Elastic Wave Propagation in Structures (Modélisation Parallèle de la Propagation D’ondes Dans les Structures Par Éléments Finis Adaptatifs) (2001), École Centrale de Paris, (in French)
[20] Grédé, A., Numerical modeling of pyrotechnic shock wave propagation in Ariane5’s structures (Modélisation des chocs d’origine pyrotechnique dans les structures d’Ariane5 : Développement de modèles de propagation et d’outils de modélisation) (2009), École Centrale de Paris, (in French)
[21] Ekevid, T.; Li, M. X.; Wiberg, N., Adaptive FEA of wave propagation induced by high-speed trains, Comput. Struct., 79, 2693-2704 (2001)
[22] Priolo, E.; Carcione, J.; Seriani, G., Numerical simulation of interface waves by high-order spectral modeling techniques, J. Acoust. Soc. Am., 95, 3, 681-693 (1994)
[23] Stanke, F. E.; Kino, G. S., A unified theory for elastic wave-propagation in polycrystalline materials, J. Acoust. Soc. Am., 75, 3, 665-681 (1984) · Zbl 0544.73040
[24] Bai, X., Finite Element Modeling of Ultrasonic Wave Propagation in Polycrystalline Materials (2017), CentraleSupélec, URL https://tel.archives-ouvertes.fr/tel-01483701/document
[25] Bai, X.; Tie, B.; Schmitt, J.-H.; Aubry, D., Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials, Ultrasonics, 87, 182-202 (2018)
[26] B. Tie, D. Solas, J. Thébault, C. Rey, T. Baudin, A. Mouronval, (Avril 2010) Numerical modeling of ultrasound propagation in polycrystalline materials (Modélisation numérique de la propagation des ultrasons dans des milieux polycristallins), in: 10th French Congress of Acoustics, CFA2010, Lyon, France, p. 6, (in french).
[27] Margetan, F.; Thompson, R.; Yalda-Mooshabad, I., Backscattered microstructural noise in ultrasonic toneburst inspections, J. Nondestr. Eval., 13, 3, 111-136 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.