Ekeland variational principles for set-valued functions with set perturbations. (English) Zbl 1442.58014
The paper under review is concerned with a set-valued version of the Ekeland variational principle. A feature of this main result is that the objective function is a set-valued map taking values in a real vector space \(K\) quasi-ordered by a convex cone and the perturbation consists
of a cone-convex subset \(H\) of \(K\) multiplied by the distance function. The main ingredients in the proof are the following: (i) a generalized nonconvex separation property; (ii) a pre-order principle. Various applications illustrate the main abstract result of this paper.
Reviewer: Vicenţiu D. Rădulescu (Craiova)
MSC:
58E30 | Variational principles in infinite-dimensional spaces |
49J53 | Set-valued and variational analysis |
65K10 | Numerical optimization and variational techniques |
90C26 | Nonconvex programming, global optimization |
90C48 | Programming in abstract spaces |
Keywords:
Ekeland variational principle; set-valued objective function; set perturbation; nonconvex separation functional; vector closure; \((C, \epsilon)\)-efficient solutionReferences:
[1] | Ekeland, I., Sur les probèmes variationnels, C R Acad Sci Paris, 275, 1057-1059 (1972) · Zbl 0249.49004 |
[2] | Ekeland, I., On the variational principle, J Math Anal Appl, 47, 324-353 (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0 |
[3] | Chen, GY; Huang, XX; Yang, XG., Vector optimization: set-valued and variational analysis (2005), Berlin: Springer-Verlag, Berlin · Zbl 1104.90044 |
[4] | Ekeland, I., Nonconvex minimization problems, Bull Amer Math Soc (NS), 1, 443-474 (1979) · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6 |
[5] | Göpfert, A.; Riahi, H.; Tammer, Chr, Variational methods in partially ordered spaces (2003), New York: Springer-Verlag, New York · Zbl 1140.90007 |
[6] | Khan, AA; Tammer, C.; Zălinescu, C., Set-valued optimization: an introduction with applications (2015), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1308.49004 |
[7] | Araya, Y., Ekeland’s variational principle and its equivalent theorems in vector optimization, J Math Anal Appl, 346, 9-16 (2008) · Zbl 1152.49016 · doi:10.1016/j.jmaa.2008.04.055 |
[8] | Bao, TQ; Mordukhovich, BS., Variational principles for set-valued mappings with applications to multiobjective optimization, Control Cybern, 36, 531-562 (2007) · Zbl 1166.49018 |
[9] | Bao, TQ; Mordukhovich, BS., Relative Pareto minimizers for multiobjective problems: existence and optimality conditions, Math Program Ser A, 122, 301-347 (2010) · Zbl 1184.90149 · doi:10.1007/s10107-008-0249-2 |
[10] | Bednarczuk, EM; Przybyla, MJ., The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors, SIAM J Optim, 18, 907-913 (2007) · Zbl 1144.58012 · doi:10.1137/060658989 |
[11] | Bednarczk, EM; Zagrodny, D., Vector variational principle, Arch Math (Basel), 93, 577-586 (2009) · Zbl 1183.58014 · doi:10.1007/s00013-009-0072-x |
[12] | Dentcheva, D.; Helbig, S., On variational principles, level sets, well-posedness, and ε-solutions in vector optimization, J Optim Theory Appl, 89, 325-349 (1996) · Zbl 0853.90101 · doi:10.1007/BF02192533 |
[13] | Du, WS., On some nonlinear problems induced by an abstract maximal element principle, J Math Anal Appl, 347, 391-399 (2008) · Zbl 1148.49013 · doi:10.1016/j.jmaa.2008.06.020 |
[14] | Finet, C.; Quarta, L.; Troestler, C., Vector-valued variational principles, Nonlinear Anal, 52, 197-218 (2003) · Zbl 1030.49003 · doi:10.1016/S0362-546X(02)00103-7 |
[15] | Flores-Bazán, F.; Gutiérrez, C.; Novo, V., A Brézis-Browder principle on partially ordered spaces and related ordering theorems, J Math Anal Appl, 375, 245-260 (2011) · Zbl 1218.49008 · doi:10.1016/j.jmaa.2010.09.014 |
[16] | Göpfert, A.; Tammer, C.; Zălinescu, C., On the vectorial Ekeland’s variational principle and minimal point theorems in product spaces, Nonlinear Anal, 39, 909-922 (2000) · Zbl 0997.49019 · doi:10.1016/S0362-546X(98)00255-7 |
[17] | Gutiérrez, C.; Jiménez, B.; Novo, V., A set-valued Ekeland’s variational principle in vector optimization, SIAM J Control Optim, 47, 883-903 (2008) · Zbl 1157.49025 · doi:10.1137/060672868 |
[18] | Ha, TXD., Some variants of the Ekeland variational principle for a set-valued map, J Optim Theory Appl, 124, 187-206 (2005) · Zbl 1064.49018 · doi:10.1007/s10957-004-6472-y |
[19] | Hamel, AH., Equivalents to Ekeland’s variational principle in uniform spaces, Nonlinear Anal, 62, 913-924 (2005) · Zbl 1093.49016 · doi:10.1016/j.na.2005.04.011 |
[20] | Isac, G.The Ekeland’s principle and the Pareto ε-efficiency. In: Tamiz M, editor. Multi-objective programming and goal programming: theories and applications. Berlin: Springer-Verlag; 1996. p. 148-163. (Lecture notes in econom. and math. systems; vol. 432). · Zbl 0869.90062 |
[21] | Khanh, PQ; Quy, DN., Versions of Ekeland’s variational principle involving set perturbations, J Glob Optim, 57, 951-968 (2013) · Zbl 1292.58012 · doi:10.1007/s10898-012-9983-3 |
[22] | Li, SJ, Yang, XQ, Chen, GY.Vector Ekeland variational principle. In: Giannessi F, editor. Vector variational inequalities and vector equilibria. Dordrecht: Klower; 2000. p. 321-333. (Nonconvex optimization and its applications; vol. 38). · Zbl 0997.49018 |
[23] | Li, SJ; Zhang, WY., A minimization theorem for a set-valued mapping, Appl Math Lett, 21, 769-773 (2008) · Zbl 1165.49020 · doi:10.1016/j.aml.2007.08.003 |
[24] | Liu, CG; Ng, KF., Ekeland’s variational principle for set-valued functions, SIAM J Optim, 21, 41-56 (2011) · Zbl 1229.90215 · doi:10.1137/090760660 |
[25] | Németh, AB., A nonconvex vector minimization problem, Nonlinear Anal, 10, 669-678 (1986) · Zbl 0613.49007 · doi:10.1016/0362-546X(86)90126-4 |
[26] | Qiu, JH., A generalized Ekeland vector variational principle and its applications in optimization, Nonlinear Anal, 71, 4705-4717 (2009) · Zbl 1170.58004 · doi:10.1016/j.na.2009.03.034 |
[27] | Qiu, JH., On Ha’s version of set-valued Ekeland’s variational principle, Acta Math Sin (Engl Ser), 28, 717-726 (2012) · Zbl 1334.49060 · doi:10.1007/s10114-011-0294-2 |
[28] | Qiu, JH., Set-valued quasi-metrics and a general Ekeland’s variational principle in vector optimization, SIAM J Control Optim, 51, 1350-1371 (2013) · Zbl 1268.49019 · doi:10.1137/110824115 |
[29] | Qiu, JH., A pre-order principle and set-valued Ekeland variational principle, J Math Anal Appl, 419, 904-937 (2014) · Zbl 1292.49021 · doi:10.1016/j.jmaa.2014.05.027 |
[30] | Qiu, JH., An equilibrium version of vectorial Ekeland variational principle and its applications to equilibrium problems, Nonlinear Anal, 27, 26-42 (2016) · Zbl 1334.49013 · doi:10.1016/j.nonrwa.2015.07.005 |
[31] | Qiu, JH., An equilibrium version of set-valued Ekeland variational principle and its applications to set-valued vector equilibrium problems, Acta Math Sin (Engl Ser), 33, 210-234 (2017) · Zbl 1368.46070 · doi:10.1007/s10114-016-6184-x |
[32] | Qiu, JH; He, F., A general vectorial Ekeland’s variational principle with a p-distance, Acta Math Sin (Engl Ser), 29, 1655-1678 (2013) · Zbl 1280.58009 · doi:10.1007/s10114-013-2284-z |
[33] | Qiu, JH; Li, B.; He, F., Vectorial Ekeland’s variational principle with a w-distance and its equivalent theorems, Acta Math Sci Ser B, 32, 2221-2236 (2012) · Zbl 1289.58009 · doi:10.1016/S0252-9602(12)60172-6 |
[34] | Tammer, C., A generalization of Ekeland’s variational principle, Optimization, 25, 129-141 (1992) · Zbl 0817.90098 · doi:10.1080/02331939208843815 |
[35] | Tammer, C.; Zălinescu, C., Vector variational principle for set-valued functions, Optimization, 60, 839-857 (2011) · Zbl 1242.49042 · doi:10.1080/02331934.2010.522712 |
[36] | Zhu, J.; Zhong, CK; Cho, YJ., A generalized variational principle and vector optimization, J Optim Theory Appl, 106, 201-218 (2000) · Zbl 0971.90080 · doi:10.1023/A:1004619426652 |
[37] | Kuroiwa, D., On set-valued optimization, Nonlinear Anal, 47, 1395-1400 (2001) · Zbl 1042.49524 · doi:10.1016/S0362-546X(01)00274-7 |
[38] | Gutiérrez, C.; Novo, V.; Ródenas-Pedregosa, JL, Nonconvex separation functional in linear spaces with applications to vector equilibria, SIAM J Optim, 26, 2677-2695 (2016) · Zbl 1471.90117 · doi:10.1137/16M1063575 |
[39] | Gerstewitz (Tammer), Chr., Nichtkonvexe Dualität in der Vektoroptimierung, Wiss Z TH Leuna-Merseburg, 25, 357-364 (1983) · Zbl 0548.90081 |
[40] | Gerstewitz (Tammer), Chr; Iwanow, E., DualitäT für nichtkonvexe Vektorptimierungsprobleme, Wiss Z Tech Hochsch Ilmenau, 2, 61-81 (1985) · Zbl 0562.90091 |
[41] | Gerth, C.; Weidner, P., Nonconvex separation theorems and some applications in vector optimization, J Optim Theory Appl, 67, 2, 297-320 (1990) · Zbl 0692.90063 · doi:10.1007/BF00940478 |
[42] | Luc, DT.Theory of vector optimization. Berlin: Springer; 1989. (Lecture notes in econom. and math. system; 319). |
[43] | Saxon, SA; Sánchez Ruiz, LM., Dual local completeness, Proc Amer Math Soc, 125, 1063-1070 (1997) · Zbl 0870.46001 · doi:10.1090/S0002-9939-97-03864-1 |
[44] | Chen, Y.; Cho, YJ; Yang, L., Note on the results with lower semi-continuity, Bull Korean Math Soc, 39, 535-541 (2002) · Zbl 1040.49016 · doi:10.4134/BKMS.2002.39.4.535 |
[45] | Köthe, G., Topological vector spaces I (1969), Berlin: Springer-Verlag, Berlin · Zbl 0179.17001 |
[46] | Kelley, JL; Namioka, I.; Donoghue, WF, Linear topological spaces (1963), Princeton: Van Nostrand, Princeton · Zbl 0115.09902 |
[47] | Wilansky, A., Modern methods in topological vector spaces (1978), New York: McGraw-Hill, New York · Zbl 0395.46001 |
[48] | Tammer, C.; Zălinescu, C., Lipschitz properties of the scalarization function and applications, Optimization, 59, 305-319 (2010) · Zbl 1211.90220 · doi:10.1080/02331930801951033 |
[49] | Adán, M.; Novo, V., Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness, European J Oper Res, 149, 641-653 (2003) · Zbl 1033.90113 · doi:10.1016/S0377-2217(02)00444-7 |
[50] | Adán, M.; Novo, V., Proper efficiency in vector optimization on real linear spaces, J Optim Theory Appl, 121, 515-540 (2004) · Zbl 1076.90051 · doi:10.1023/B:JOTA.0000037602.13941.ed |
[51] | Qiu, JH., The domination property for efficiency and Bishop-Phelps theorem in locally convex spaces, J Math Anal Appl, 402, 133-146 (2013) · Zbl 1273.46001 · doi:10.1016/j.jmaa.2012.12.072 |
[52] | Pérez Carreras, P.; Bonet, J., Barrelled locally convex spaces (1987), Amsterdam: North-Holland, Amsterdam · Zbl 0614.46001 |
[53] | Holmes, RB., Geometric functional analysis and its applications (1975), New York: Springer, New York · Zbl 0336.46001 |
[54] | Zălinescu, C., Convex analysis in general vector spaces (2002), Singapore: World Sci., Singapore · Zbl 1023.46003 |
[55] | Gutiérrez, C.; Jiménez, B.; Novo, V., On approximate efficiency in multiobjective programming, Math Methods Oper Res, 64, 165-185 (2006) · Zbl 1117.90063 · doi:10.1007/s00186-006-0078-0 |
[56] | Gutiérrez, C.; Jiménez, B.; Novo, V., A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J Optim, 17, 688-710 (2006) · Zbl 1119.49020 · doi:10.1137/05062648X |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.