×

Modeling of vibration of nanoporous microcantilevers from anodic aluminum oxide for biochemical sensors. (Russian. English summary) Zbl 1454.74058

Summary: The results of a study of the oscillations of microcantilevers (MC) made of nanoporous anodic aluminum oxide and constituting the basis of biochemical sensors are described. Finite-element modeling of MC vibrations revealed sources of resonances in the frequency spectrum that do not correspond to the cantilever oscillations and complicate the development of sensors. It has been shown for the first time that such sources are resonances of vibrations of the base of the MC on the elastic layer of the compound used to attach the base to the substrate. Approximate relationships between the parameters of the MC, base, and compound layer are obtained, which ensure that only the working modes of MC vibrations are present in the spectrum. To ensure a clean spectrum, one of two conditions must be observed or a combination of both: a sufficiently rigid MC attachment to the substrate and a sufficiently small base size. Ensuring a clean spectrum is achieved regardless of the rigidity of the MC fastening, if the base length does not exceed: for the 3rd, 4th, and 5th harmonics of the MC working mode – 0.6, 0.43, and 0.33 MC lengths, respectively.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74M25 Micromechanics of solids

References:

[1] E. Peiner, H. S. Wasisto, “Cantilever Sensors”, Sensors, 19:9 (2019), 2043-2045 · doi:10.3390/s19092043
[2] L. Schlur, J. R. Calado, D. Spitzer, “Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever”, R. Soc. open sci., 5, 180510 · doi:10.1098/rsos.180510
[3] B. N. Johnson, R. Mutharasan, “Biosensing using dynamic-mode cantilever sensors: A review”, Biosensors & Bioelectronics, 32 (2012), 1-18 · doi:10.1016/j.bios.2011.10.054
[4] I. Pellejero, J. Agustí, M. A. Urbiztondo, J. Sesé et al, “Nanoporous silicalite-only cantilevers as micromechanical sensors: Fabrication, resonance response and VOCs sensing performance”, Sens. Actuators: B Chemical, 168 (2012), 74-82 · doi:10.1016/j.snb.2012.01.041
[5] S. Kim, K. D. Kihm, T. Thundat, “Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors”, Experiments in fluids, 48 (2010), 721-736 · doi:10.1007/s00348-010-0830-3
[6] I. S. Amiri, S. Addanki, “Simulation fabrication and characterization of micro-cantilever array based ozone sensor”, Results in Physics, 10 (2018), 923-933 · doi:10.1016/j.rinp.2018.08.010
[7] R. Agarwal, R. Mukhiya, R. Sharma et al, “Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications”, Defence Science Journal, 66:5 (2016), 485-488 · doi:10.14429/dsj.66.10702
[8] N. Siddaiah, D. V. Rama Koti Reddy, Y. Sankar et al, “Modeling and Simulation of Triple Coupled Cantilever Sensor for Mass Sensing Applications”, Intern. Journal of Electrical and Computer Engineering (IJECE), 5:3 (2015), 403-408 · doi:10.11591/ijece.v5i3.pp403-408
[9] R. Datar, S. Kim, S. Jeon et al., “Cantilever Sensors: Nanomechanical Tools for Diagnostics”, MRS Bulletin, 34 (2009), 449-454 · doi:10.1557/mrs2009.121
[10] V. Chivukula, M. Wang, H. F. Ji, A. Khaliq, J. Fang, K. Varahramyan, “Simulation of \(SiO_2\)-based piezoresistive microcantilevers”, Sensors and Actuators A, 125 (2006), 526-533 · doi:10.1016/j.sna.2005.08.038
[11] P.-S. Lee, J. Lee, N. Shin et al., “Microcantilevers with Nanochannels”, Advanced materials, 20:9 (2008), 1732-1737 · doi:10.1002/adma.200701490
[12] O. Boytsova, A. Klimenko, V. Lebedev et al, “Nanomechanical humidity detection through porous alumina cantilevers”, Beilstein J. Nanotechnol., 6 (2015), 1332-1336 · doi:10.3762/bjnano.6.137
[13] V. N. Simonov, N. L. Matison, O. A. Boytsova, O. K. Krasilnikova, “Computer Simulation of Nanoporous Alumina Microcantilevers and the Study of the influence of Porosity on the elastic moduli of oxide”, Nanotechnologies in Russia, 10:5-6 (2015), 428-433 · doi:10.1134/S1995078015030167
[14] G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook, M.I.T. Press, Cambridge, Massachusetts, 1971, 146 pp.
[15] V. N. Simonov, L. P. Loshmanov, E. B. Markova, “Composite model of the dependence of mechanical properties of anodic aluminum oxide on porosity”, Inorganic Materials: Applied Research, 8 (2017), 813-815 · doi:10.1134/S2075113317050288
[16] W. Martienssen, H. Warlimon, Springer Handbook of Condensed Matter and Materials Data, Springer, Germany, 2005, 1119 pp.
[17] I. V. Andriianov, V. V. Danishevski, A. O. Ivankov, Asimptoticheskie metody v teorii kolebanii balok i plastin, PGASA, Dnepropetrovsk, 2010, 217 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.