×

Analytical and numerical treatment of a dynamic crack model. (English) Zbl 1264.74217

Summary: We discuss the propagation of a running crack in a bounded linear elastic body under shear waves for a simplified 2D-model. This model is described by two coupled equations in the actual configuration: a two-dimensional scalar wave equation in a cracked, bounded domain and an ordinary differential equation derived from an energy balance law. The unknowns are the displacement fields \(u=u(y,t)\) and the one-dimensional crack tip trajectory \(h=h(t)\). We assume that the crack grows straight. Based on a paper of Nicaise-Sändig, we derive an improved formula for the ordinary differential equation of motion for the crack tip, where the dynamical stress intensity factor occurs. The numerical simulation is an iterative procedure starting from the wave field at time \(t=t_i\). The dynamic stress intensity factor will be extracted at \(t=t_i\). Its knowledge allows us to compute the crack-tip motion \(h(t_{i+1})\) with corresponding nonuniform crack speed assuming \((t_{i+1}-t_i)\) is small. Now, we start from the cracked configuration at time \(t=t_{i+1}\) and repeat the steps. The wave displacements are computed with the FEM-package PDE2D. Some numerical examples demonstrate the proposed method. The influence of finite length of the crack and finite size of the sample on the dynamic stress intensity factor will be discussed in detail.

MSC:

74R10 Brittle fracture
74B05 Classical linear elasticity
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

PDE2D; gnuplot
Full Text: DOI

References:

[1] ASTM E 1823-96 (1996) Standard terminology relating to fatigue ans fracture testing, Annual book of ASTM Standards, vol. 03.01. American Society for Testing and Materials, West Conshohocken
[2] Atluri SN, Nishioka T (1985) Numerical studies in dynamic fracture mechanics. In: Williams ML, Knauss WG(eds) Dynamic fracture. Martinus Nijhoff Publishers, Dodrecht, pp 119–135
[3] Bratov V, Petrov Y (2007) Application of incubation time approach to simulate dynamic crack propagation. Int J Fract 146: 53–60 · Zbl 1423.74819 · doi:10.1007/s10704-007-9135-9
[4] Brenner SC (1999) Multigrid methods for the computation of singular solutions and stress intensity factors I: corner singularities. Math Comput 68(226): 559–583 · Zbl 1043.65136 · doi:10.1090/S0025-5718-99-01017-0
[5] Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer Verlag
[6] Broberg KB (1999) Cracks and fracture, [u.a.]. Academic Press, San Diego, California
[7] Brokate M, Khludnev A (2004) On crack propagation shapes in elastic bodies. Z Angew Math Phys 55: 318–329 · Zbl 1099.74013 · doi:10.1007/s00033-003-3026-3
[8] Buehler MJ, Gao H, Huang Y (2003) Atomistic and continuum studies of a suddenly stopping supersonic crack. Comput Mater Sci 28: 385–408 · doi:10.1016/j.commatsci.2003.08.001
[9] Ciarlet PG (1976) The finite element method for elliptic problems. North-Holland Publishing Company
[10] Charoenphan S (2002) Computer methods for modeling the progressive damage of composite material plates and tubes. PHD Thesis, University of Wisconsin-Madison
[11] Dauge M (1988) Elliptic boundary value problems on corner domains, Lecture notes in mathematics 1341, Springer-Verlag, Berlin-Heidelberg, MR 91a:35078
[12] Destuynder P, Jaoua M (1981) Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math Methods Appl Sci 3: 70–87 · Zbl 0493.73087 · doi:10.1002/mma.1670030106
[13] Erdogan F (1968) Crack-propagation theories, Chap. 5. In: (eds) Fracture, vol II. Academic Press, New York
[14] Freund LB (1973) Crack propagation in an elastic solid subjected to general loading. III Stress wave loading. J Mech Phys Solids 21: 47–61 · Zbl 0265.73080 · doi:10.1016/0022-5096(73)90029-X
[15] Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, New York · Zbl 0712.73072
[16] Freund LB, Clifton RJ (1974) On the uniqueness of plate elastodynamic solutions for running cracks. J Elast 4(4): 293–299 · Zbl 0295.73015 · doi:10.1007/BF00048612
[17] Freund LB, Rosakis AJ (1992) The structure of the near tip field solution during transient elastodynamic crack growth. J Mech Phys Solids 40: 699–719 · doi:10.1016/0022-5096(92)80010-N
[18] Freund LB, Duffy J and Rosakis AJ (1981) Dynamic fracture initiation in metals and preliminary results on the method of caustics for crack propagation measurements, Cambridge University Press
[19] Friedman A, Hu B, Velazquez JJL (2000) The evolution of stress intensity factors and the propagation of cracks in elastic media. Arch Ration Mech Anal 152: 103–139 · Zbl 0970.74058 · doi:10.1007/s002050000072
[20] Grisvard P (1985) Elliptic problems in nonsmooth domains, Pitman. Boston MR 86m:35044 · Zbl 0695.35060
[21] Großmann C, Roos H-G (2005) Numerische Behandlung partieller Differentialgleichungen. B.G. Teubner Verlag
[22] Gross D (1996) Bruchmechanik. Springer-Verlag, Berlin
[23] Kerkhof F (1965) Habilitationsschrift, Karlsruhe
[24] Kobayashi AS, Mall S (1978) Dynamic fracture toughness of Homalite 100. Exp Mech 18: 11–18 · doi:10.1007/BF02326552
[25] Kondrat’ev VA (1967) Boundary value problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16: 227–313
[26] Koslov VA, Maz’ya VG, Rossmann J (1997) Elliptic boundary value problems in domains with point singularities, American Mathematical Society, Providence
[27] Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. Appl Math Mech 30: 1241–1248 · doi:10.1016/0021-8928(66)90087-6
[28] Kovtunenko VA (2001) Sensitivity of cracks in 2D-Lam’e problem via material derivatives. Z Angew Math Phys 52: 1071–1087 · Zbl 1153.74370 · doi:10.1007/PL00001584
[29] Lee Y, Prakash V (1998) Dynamic fracture toughness versus crack tip speed relationship at lower than room temperature for high strength 4340var structural steel. J Mech Phys Solids 46(10): 1943–1967 · Zbl 0945.74685 · doi:10.1016/S0022-5096(98)00031-3
[30] Maz’ya VG, Plamenevskii BA (1978) On the coefficients in the asymptotics of the solutions of an elliptic boundary value problem in domains with conical points. J Soviet Math 9: 750–764 · Zbl 0396.35038 · doi:10.1007/BF01085326
[31] Morozov N, Petrov Y (2000) Dynamics of fracture. Springer-Verlag, Berlin · Zbl 0956.74002
[32] Nazarov SA, Plamenesvkii BA (1994) Elliptic problems in domians with piecewise smooth boundaries, expositions in mathematics, vol 13. de Gruyter, Berlin, MR 95h:35001
[33] Nicaise S, Sändig A-M (2007) Dynamical crack propagation in a 2D elastic body The out-of plane state. J Math Anal Appl 329: 1–30 · Zbl 1342.74143 · doi:10.1016/j.jmaa.2006.06.043
[34] Nishioka T, Atluri SN (1986) Computational methods in dynamic fracture. In: Atluri SN (ed) Computational methods in the mechanics of fracture, Chap. 10, Elsevier Science Publishers, pp 335-383
[35] Ohyoshi T (1973) Effect of orthotropy on singular stresses produced near a crack tip by incident SH-waves. ZAMM 53: 409–411 · Zbl 0266.73058 · doi:10.1002/zamm.19730530608
[36] Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int J of Fract 90: 153–174 · doi:10.1023/A:1007439301360
[37] Ravi-Chandar K, Knauss WG (1982) Dynamic crack-tip stresses under stress wave loading–A comparison of theroy and experiment. Int J Fract 20: 209–222 · doi:10.1007/BF01140336
[38] Ravi-Chandar K, Knauss WG (1984) An experimental investigation into the mechanics of dynamic fracture: I. Crack initiation and arrest. Int J Fract 25: 247–262 · doi:10.1007/BF00963460
[39] Ravichandran G, Clifton RJ (1989) Dynamic fracture undr plane wave loading. Int J Fract 40: 157–201 · doi:10.1007/BF00960599
[40] Rosakis G, Ravichandran G (2000) Dynamic failure mechanics. Int J Solids Struct 37: 331–348 · Zbl 1075.74070 · doi:10.1016/S0020-7683(99)00097-9
[41] Rosakis AJ, Duffy J, Freund LB (1984) The determination od dynamic fracture toughness of AISI 4340 steel by the shadow spot method. J Mech Phys Solids 32: 443–460 · doi:10.1016/0022-5096(84)90030-9
[42] Rosakis AJ, Liu C, Freund LB (1991) A note on the asymptotic stress field of a non-uniformly propagating dynamic crack. Int J Fract 50: R39–R45 · doi:10.1007/BF00032161
[43] Sändig A-M, Nicaise S, Lalegname A (2007) Dynamic crack propagation in a 2D elastic body. The out-of plane case. ICIAM 07. ETH Zürich
[44] Sewell G PDE2D, University of Texas, El Paso. http://www.pde2d.com
[45] Sewell G (2005) The numerical solution of ordinary and partial differential equations, 2nd Edn. Wiley · Zbl 1089.65053
[46] Schwab C (1998) P- and hp-finite element methods. Oxford University Press · Zbl 0910.73003
[47] Schwalbe K-H, Landes JD, Heerens J (2007/14) Classical fracture mechanics methods. Comprehensive structural integrity. Online update, vol 11. GKSS 2007/14
[48] Seelig Th (1997) Zur Simulation der dynamischen Rißausbreitung mit einer Zeitbereichs-Randelementmethode. Ph.D. Thesis, TH Darmstadt, Germany
[49] Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press
[50] Takahashi K, Arakawa K (1987) Dependence of crack acceleration on the dynamic stress–intensity factor in polymers. Exp Mech 27: 195–199 · doi:10.1007/BF02319474
[51] Tvergaard V, Hutchinson J (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6): 1377–1397 http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/exper/gordon/www/fractough.html · Zbl 0775.73218
[52] Williams T et al. (2004) GnuPlot, version 4.0. Technical report, Pixar Corporation, http://www.gnuplot.info/2004
[53] Yang B, Ravi-Chandar K (1996) On the role of the process zone in dynamic fracture. J Mech Phys Solids 44(12): 1955–1976 · doi:10.1016/S0022-5096(96)00067-1
[54] Zehnder AT, Rosakis AJ (1990) Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int J Fract 43(4): 271–285 · doi:10.1007/BF00035087
[55] Zhang Ch (1993) On wave propagation in cracked solids Habilitationsschrift. TH Darmstadt, Germany
[56] Zhang Ch, Gross D (1993) Interaccion of antiplane cracks with elastic waves in transversely isotropic materials. Acta Mechanica 101: 231–247 · Zbl 0789.73025 · doi:10.1007/BF01175608
[57] Zhou F, Shioya T (1996) Energy balance analysis on mode-III dynamic crack propagation in fixed sided strip. Int J Fract 80: 33–44 · doi:10.1007/BF00036478
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.