×

Biaxial loading of continuously graded thermoviscoplastic materials. (English) Zbl 1163.74009

Summary: We study biaxial loading of a sheet made of a continuously graded thermoviscoplastic material. The material phases are supposed to exhibit thermal softening, strain-rate sensitivity and strain hardening, continuously varying along all directions. First, we formulate the plane stress problem for a non-homogeneous material and study the behavior of temperature, strain and strain rate related to inhomogeneities of thermomechanical parameters and geometrical defects. Next we present the “effective” instability analysis of D. Dudzinski and A. Molinari [Int. J. Solids Struct. 27, No. 5, 601–628 (1991; Zbl 0734.73032)], adapted to the non-homogeneous case, to define the critical conditions and select the localization modes, by studying the overall strains for which a certain level of instability growth is developed. Finally, we present the numerical simulation of the full nonlinear dynamical problem. Several aspects of the deformation process and the related role of non-homogeneities are analyzed: onset of strain and temperature localization, ductility, contours of temperature increase as detectors of instability, interplay with initial defects, multiple necking, decrease of thinning-rate, and finally the variation of multiple necking due to boundary conditions.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74F05 Thermal effects in solid mechanics
74E05 Inhomogeneity in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Citations:

Zbl 0734.73032

Software:

ABAQUS
Full Text: DOI

References:

[1] Abaqus Manuals (2004). Version 6.5 Hibbit, Karlson and Sorensen, Inc., Providence, USA
[2] Aboudi J, Pindera M, Arnold SM (1999). Higher-order theory for functionallygraded materials. Compos Part B-Eng 30(8):777–832 · doi:10.1016/S1359-8368(99)00053-0
[3] Aboudi J, Pindera M, Arnold SM (2003). Higher-order theory for periodic multiphase materials with inelastic phases. Int J Plast 19(6):805–847 · Zbl 1090.74529 · doi:10.1016/S0749-6419(02)00007-4
[4] Anand L, Kim KH, Shawki TG (1987). Onset of shear localization in viscoplastic solids. J Mech Phys Solids 35(4):407–427 · Zbl 0612.73046 · doi:10.1016/0022-5096(87)90045-7
[5] Bai YL (1982). Thermo-plastic instability in simple shear. J Mech Phys Solids 30(4):195–207 · Zbl 0491.73037 · doi:10.1016/0022-5096(82)90029-1
[6] Bansal Y, Pindera MJ (2003). Efficient reformulation of the thermoelastic higher-order theory for functionally graded materials. J Therm Stress 26:1055–1092 · doi:10.1080/714050872
[7] Bansal Y, Pindera MJ (2005). A second look at the higher-order theory for periodic multiphase materials. J Appl Mech 72(2):177–195 · Zbl 1111.74321 · doi:10.1115/1.1831294
[8] Bathe KJ (1996). Finite element procedures. Prentice-Hall, Englewood Cliffs
[9] Batra RC (1988). Steady state penetration of thermoviscoplastic targets. Computational Mechanics 3:1–12 · Zbl 0626.73130 · doi:10.1007/BF00280747
[10] Batra RC, Kim CH (1990). Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials. Int J Plast 6:127–141 · doi:10.1016/0749-6419(90)90018-A
[11] Batra RC, Lear MH (2005). Adiabatic shear banding in plane strain tensile deformations of 11 thermoviscoplastic materials with finite thermal wave speed. Int J Plast 21:1521–1545 · Zbl 1148.74309 · doi:10.1016/j.ijplas.2004.07.004
[12] Batra RC, Love BM (2004). Adiabatic shear bands in functionally graded materials. J Therm Stress 27:1101–1123 · doi:10.1080/01495730490498494
[13] Batra RC, Love BM (2005). Mesoscale analysis of shear bands in high strain rate deformations of tungsten/nickel-iron composites. J Therm Stress 28(6-7):747–782
[14] Batra RC, Wei ZG (2005a) Shear band spacing in thermoviscoplastic materials. Int J Impact Eng (in press)
[15] Batra RC, Wei ZG (2005b) Shear bands due to heat flux prescribed at boundaries. Int J Plast (in press)
[16] Belytschko T, Liu WK, Moran B (2000). Nonlinear finite elements for continua and structures. Wiley, New York · Zbl 0959.74001
[17] Berezovski A, Engelbrecht J, Maugin GA (2003) Stress wave propagation in functionally graded materials. In: WCU 2003, Paris, pp 507–509 · Zbl 1038.74575
[18] Bonnet-Lebouvier AS, Molinari A, Lipinski P (2002). Analysis of the dynamic propagation of adiabatic shear bands. Int J Solids Struct 39(16):4249–4269 · Zbl 1006.74503 · doi:10.1016/S0020-7683(02)00244-5
[19] Caurtney TH (2000). Mechanical behavior of materials. Material science/metallurgy series, McGraw-Hill, New York
[20] Chan YS, Fannjiang AC, Paulino GH (2003). Integral equations with hypersingular kernels-theory and applications to fracture mechanics. Int J Eng Sci 41:683–720 · Zbl 1211.74184 · doi:10.1016/S0020-7225(02)00134-9
[21] Charalambakis N (1985). Time-asymptotic stability of non-Newtonian fluid of plastic solid. Mech Res Commun 12:311–317 · Zbl 0592.76009 · doi:10.1016/0093-6413(85)90001-1
[22] Charalambakis N, Baxevanis T (2004). Adiabatic shearing of non-homogeneous thermoviscoplastic materials. Int J Plast 20:899–914 · Zbl 1254.74032 · doi:10.1016/j.ijplas.2003.08.004
[23] Charalambakis N, Murat F (1989). Weak solutions to the initial-boundary problem for the shearing of non-homogeneous thermoviscoplastic materials. Proc R Soc Edinb 113A:257–265 · Zbl 0686.73007
[24] Charalambakis N, Murat F (2005a) Approximation by finite elements, existence and uniqueness for a model of stratified thermoviscoplastic materials. Ricerche di Matematica (in press) · Zbl 1150.74046
[25] Charalambakis N, Murat F(2006) Homogenization of stratified thermoviscoplastic materials. Q Appl Math (in press) · Zbl 1144.74364
[26] Chatzigeorgiou G, Charalambakis N (2005). Instability analysis of non-homogeneous materials under biaxial loading. Int J Plast 21(10):1970–1999 · Zbl 1154.74304 · doi:10.1016/j.ijplas.2005.01.002
[27] Cheng ZQ, Batra RC (2000). Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos B 31:97–106 · doi:10.1016/S1359-8368(99)00069-4
[28] Clifton RJ, Duffy J, Hartley KA, Shawki TJ (1984). On critical conditions for shear band formation at high strain rates. Scripta Metallurgica 18:443–448 · doi:10.1016/0036-9748(84)90418-6
[29] Dafermos CM, Hsiao L (1983). Adiabatic shearing of incompressible fluids with temperature dependent viscosity. Q Appl Math 41:45–58 · Zbl 0514.76029
[30] Dudzinski D, Molinari A (1991). Perturbation analysis of thermoviscoplastic instabilities in biaxial loading. Int J Solids Struct 27(5):601–628 · Zbl 0734.73032 · doi:10.1016/0020-7683(91)90216-3
[31] Georgievskii DV (2000). Viscoplastic stratified composites: shear flows and stability. Comput Struct 76:205–210 · doi:10.1016/S0045-7949(99)00160-1
[32] Havner K (2004). On the onset of necking in the tensile test. Int J Plast 20(4-5):965–978 · doi:10.1016/j.ijplas.2003.05.004
[33] Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. In: Mathematical and Physical Sciences. Royal Society of London A193, pp 281–297 · Zbl 0032.08805
[34] Hill R (1952). Mathematical theory of plasticity. Clarendon Press, Oxford
[35] Hill R, Hutchinson JW (1975). Bifurcation phenomena in the plane tension test. J Mech Phys Solids 23:239–264 · Zbl 0331.73048 · doi:10.1016/0022-5096(75)90027-7
[36] Hodowany J, Ravichandran G, Rosakis AJ, Rosakis P (2000). Partition of plastic work into heat and stored energy in metals. Exp Mech 40(2):113–123 · Zbl 1005.74004 · doi:10.1007/BF02325036
[37] Homma H, Shah QH, Kawada S (1995). Effect of temperature gradient on crack initiation. Int J Press Vessels Piping 63(3):339–345 · doi:10.1016/0308-0161(94)00043-I
[38] Jin ZH, Batra RC (1996). Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids 44:1221–1235 · doi:10.1016/0022-5096(96)00041-5
[39] Jin ZH, Batra RC (1998). R-curve and strength behavior of a functionally graded material. Mater Sci Eng A242:70–76
[40] Liu Q, Jiang S (2003). Global existence and numerical approximation in adiabatic shearing of incompressible fluids. J Comput Appl Math 154(2):303–317 · Zbl 1041.76015 · doi:10.1016/S0377-0427(02)00827-0
[41] Molinari A (1985). Instabilité thermoplastique en cisaillement simple. Mécanique Théorique et Appliquée 4:659–684 · Zbl 0578.73119
[42] Molinari A, Clifton R (1983). Localisation de la déformation viscoplastique en cisaillement simple, Résultats exacts en théorie non-linéaire. Comptes Rendus. Académie des Sciences II 296:1–4 · Zbl 0523.73026
[43] Molinari A, Clifton R (1987) Analytical characterization of shear localisation. J Appl Mech 54:806–912 · Zbl 0633.73118 · doi:10.1115/1.3173121
[44] Molinari A, Musquar C, Sutter G (2002). Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int J Plast 18(4):443–459 · Zbl 0987.74504 · doi:10.1016/S0749-6419(01)00003-1
[45] Naboulsi SK, Palazotto AN (2001). Thermomicromechanical damage in composites. AIAA Stud J 39(1):141–152 · doi:10.2514/2.1282
[46] Naboulsi SK, Palazotto AN (2003). Damage model for metal–matrix composite under high intensity loading. Int J Plast 19(4):435–468 · Zbl 1090.74674 · doi:10.1016/S0749-6419(01)00043-2
[47] Ogawa K (2002) Application of shear localization to metal working. In: Khan AS, Lopez-Pamies O (eds) Plasticity, damage and fracture at micro, macro and nano scales, Neat Press, pp 657–659
[48] Ozturk M, Erdogan F (1993). The antisymmetric crack problem in a nonhomogeneous medium. J Appl Mech 60:406–413 · Zbl 0774.73053 · doi:10.1115/1.2900808
[49] Ozturk M, Erdogan F (1995). An axisymmetric crack in bonded materials with a nonhomogeneous interfacial zone under torsion. J Appl Mech 62:116–125 · Zbl 0822.73059 · doi:10.1115/1.2895891
[50] Paulino GH, Fannjiang AC, Chan YS (2003). Gradient elasticity theory for mode III fracture in functionally graded materials – Part I: crack perpendicular to the material gradation. J Appl Mech 70”(4):531–542 · Zbl 1110.74622 · doi:10.1115/1.1532321
[51] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in Fortran 77: The art of scientific computing. Cambridge University Press, London · Zbl 0778.65002
[52] Rice JR (1976) The localization of plastic deformation. In: Koiter W (ed) Theor Appl Mech pp 207–220
[53] Rigatos A, Charalambakis N (1990). Stability conditions and numerical solutions on oscillatory thermoviscous shearing. Comput Mech 6:463–471 · Zbl 0714.76045 · doi:10.1007/BF00350426
[54] Rigatos A, Charalambakis N (2001). Two-dimensional adiabatic Newtonian flow with temperature dependent viscosity. Int J Eng Sci 39(10):1143–1165 · doi:10.1016/S0020-7225(00)00082-3
[55] Roessig KM, Mason JJ (1999). Adiabatic shear localization in the dynamic punch test, part I: experimental investigation. Int J Plast 15(3):241–262 · Zbl 0986.74501 · doi:10.1016/S0749-6419(98)00069-2
[56] Rudnicki JW, Rice JR (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394 · doi:10.1016/0022-5096(75)90001-0
[57] Seto T, Nishimura T (2004). Study of two-dimensional elasticity on FGM. In: Proceedings of 21st international congress of theoretical and applied mechanics, Warsaw
[58] Shehadeh M, Zbib H, de la Rubia TD (2005). Multiscale dislocation dynamics simulations of shock compression in copper single crystal. Int J Plast 21:2369–2390 · Zbl 1101.74317 · doi:10.1016/j.ijplas.2004.12.004
[59] Storen S, Rice JR (1975). Localized necking in thin sheets. J Mech Phys Solids 23:421–441 · Zbl 0328.73029 · doi:10.1016/0022-5096(75)90004-6
[60] Toth LS, Dudzinski D, Molinari A (1996). Forming limit predictions with the perturbation method using stress potential functions of polycrystal viscoplasticity. Int J Mech Sci 38(8–9):805–824 · Zbl 0876.73029 · doi:10.1016/0020-7403(95)00109-3
[61] Tzavaras AE (1986). Plastic shearing of materials exhibiting strain hardening or strain softening. Arch Ration Mech Anal 94:39–58 · Zbl 0596.73014 · doi:10.1007/BF00278242
[62] Tzavaras AE (1987). Effect of thermal softening in shearing of strain-rate dependent materials. Arch Ration Mech Anal 99:349–374 · Zbl 0625.73004 · doi:10.1007/BF00282051
[63] Tzavaras AE (1992). Nonlinear analysis techniques for shear band formation at high strain rates. Appl Mech Rev 45:82–94 · doi:10.1115/1.3121395
[64] Vel SS, Batra RC (2002). Exact solutions for thermoelastic deformations of functionally graded thick rectangular plates. AIAA Stud J 40(7):1421–1433 · doi:10.2514/2.1805
[65] Vel SS, Batra RC (2003). Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct 40:7181–7196 · Zbl 1076.74037 · doi:10.1016/S0020-7683(03)00361-5
[66] Voyiadzis GZ, Abed FH (2005). Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech Mater 37(2-3):355–378 · doi:10.1016/j.mechmat.2004.02.003
[67] Walter JW (1992). Numerical experiments on adiabatic shear band formation in one dimension. Int J Plast 8:657–693 · doi:10.1016/0749-6419(92)90023-6
[68] Wang BL, Han JC, Du S (2000). Cracks problem for non-homogeneous composite material subjected to dynamic loading. Int J Solids Struct 37(9):1251–1274 · Zbl 0970.74066 · doi:10.1016/S0020-7683(98)00292-3
[69] Wright TW (2002). The physics and mathematics of shear bands. Cambridge University Press, London
[70] Wu Y, Ling Z, Dong Z (2000). Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface. Int J Solids Struct 37(9):1275–1292 · Zbl 0960.74056 · doi:10.1016/S0020-7683(98)00295-9
[71] Zhang ZJ, Paulino GH (2005). Cohesive zone modelling of dynamic failure in homogeneous and functionally graded materials. Int J Plast 21(6):1195–1254 · Zbl 1154.74391 · doi:10.1016/j.ijplas.2004.06.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.