×

Duality principles in Hilbert-Schmidt frame theory. (English) Zbl 1475.42043

The concept of frame has several generalizations such as pseudo-frame, fusion frame (or frame of subspaces) and generalized frame (known as g-frame), among others. In particular, Hilbert-Schmidt (HS) frames are sequences of HS operators and are a more general version of g-frames. In this context, the notions of HS-Bessel sequences, HS-Riesz bases and HS-orthonormal bases are defined.
In the present paper, the notion of HS-R-dual sequence is introduced and used to establish some results about duality. It is proved that a sequence is an HS-frame (HS-frame sequence, HS-Riesz basis) if and only if its HS-R-dual sequence is an HS-Riesz sequence (HS-frame sequence, HS-Riesz basis) and the (unitary) equivalence between two HS-frames is characterized in terms of their HS-R-duals and transition matrices, respectively. HS-Rduals are characterized and it is proved that, given an HS-frame, among all its dual HS-frames, only the canonical dual admits minimal-norm HS-R-dual. Using HS-R-duals, dual HS-frame pairs are also characterized.

MSC:

42C15 General harmonic expansions, frames
46C50 Generalizations of inner products (semi-inner products, partial inner products, etc.)
47A58 Linear operator approximation theory
41A35 Approximation by operators (in particular, by integral operators)
Full Text: DOI

References:

[1] GaborD. Theory of communications. J Inst Elec Eng. 1946;93:429‐457.
[2] DuffinRJ, SchaefferAC. A class of nonharmonic Fourier series. Trans Amer Math Soc. 1952;72:341‐366. · Zbl 0049.32401
[3] ChristensenO. An Introduction to Frames and Riesz Bases. Cham: Birkhäuser/Springer; 2016. · Zbl 1348.42033
[4] GröchenigK. Foundations Time‐Frequency Analysis. Boston: Birkhäuser; 2001. · Zbl 0966.42020
[5] YoungRM. An Introduction to Nonharmonic Fourier Series. New York: Academic Press; 1980. · Zbl 0493.42001
[6] JanssenAJEM. Duality and biorthogonality for Weyl‐Heisenberg frames. J Fourier Anal Appl. 1995;1(4):403‐436. · Zbl 0887.42028
[7] DaubechiesI, LandauHJ, LandauZ. Gabor time‐frequency lattices and the Wexler‐Raz identity. J Fourier Anal Appl. 1995;1(4):437‐478. · Zbl 0888.47018
[8] RonA, ShenZ. Weyl‐Heisenberg frames and Riesz bases in \(L^2( \mathbb{R}^d)\). Duke Math J. 1997;89(2):237‐282. · Zbl 0892.42017
[9] WexlerJ, RazS. Discrete Gabor expansions. Signal Proc. 1990;21(3):207‐220.
[10] CasazzaPG, KutyniokG, LammersMC. Duality principles in frame theory. J Fourier Anal Appl. 2004;10(4):383‐408. · Zbl 1058.42020
[11] StoevaDT, ChristensenO. On R‐duals and the duality principle in Gabor analysis. J Fourier Anal Appl. 2015;21(2):383‐400. · Zbl 1312.42037
[12] StoevaDT, ChristensenO. On various R‐duals and the duality principle. Integr Equ Oper Theory. 2016;84(4):577‐590. · Zbl 1338.42047
[13] ChristensenO, KimHO, KimRY. On the duality principle by Casazza, Kutyniok, and Lammers. J Fourier Anal Appl. 2011;17(4):640‐655. · Zbl 1222.42031
[14] ChristensenO, XiaoXC, ZhuYC. Characterizing R‐duality in Banach spaces. Acta Math Sin(Engl Ser). 2013;29(1):75‐84. · Zbl 1268.42054
[15] DongJ, LiYZ. Duality relations for a class of generalized weak R‐duals. submitted. · Zbl 1471.42063
[16] FanZT, HeineckeA, ShenZW. Duality for frames. J Fourier Anal Appl. 2016;22(1):71‐136. · Zbl 1332.42024
[17] FanZT, JiH, ShenZW. Dual Gramian analysis: Duality principle and unitary extension principle. Math Comp. 2016;85(297):239‐270. · Zbl 1326.42037
[18] LiYZ, DongJ. On a class of weak R‐duals and the duality relations. Banach J Math Anal. 2020;14(2):450‐469. · Zbl 1445.42022
[19] XiaoXM, ZhuYC. Duality principles of frames in Banach spaces. Acta Math Sci Ser A(Chin Ed). 2009;29(1):94‐102. · Zbl 1199.42137
[20] Arabyani‐NeyshaburiF, ArefijamaalAA. Manufacturing pairs of woven frames applying duality principle on Hilbert spaces. Bull Malays Math Sci Soc. https://doi.org/10.1007/s40840‐020‐00940‐9 · Zbl 1457.42041 · doi:10.1007/s40840‐020‐00940‐9
[21] XiangZQ. More on inequalities for weaving frames in Hilbert spaces. Mathematics. 2019;7(2):141.
[22] Arabyani‐NeyshaburiF, ArefijamaalAA, SadeghiG. Numerically and spectrally optimal dual frames in Hilbert spaces. Linear Algebra Appl. 2020;604:52‐71. · Zbl 1446.42041
[23] GuoQP, LengJS, HanDG, FanQY, LiHB, GaoQ. Adaptive optimal dual frames for signal reconstruction with erasures. IEEE Access. 2016;4:7577‐7594.
[24] LiSD, OgawaH. Pseudoframes for subspaces with applications. J Fourier Anal Appl. 2004;10(4):409‐431. · Zbl 1058.42024
[25] AsgariMS, KhosraviA. Frames and bases of subspaces in Hilbert spaces. J Math Anal Appl. 2005;308(2):541‐553. · Zbl 1091.46006
[26] CasazzaPG, KutyniokG. Frames of subspaces. Contemp Math. 2004;345:87‐113. · Zbl 1058.42019
[27] CasazzaPG, KutyniokG, LiS. Fusion frames and distributed processing. Appl Comput Harmon Anal. 2008;25(1):114‐132. · Zbl 1258.42029
[28] AldroubiA, CabrelliC, MolterU. Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for \(L^2( \mathbb{R}^d)\). Appl Comput Harmon Anal. 2004;17(2):119‐140. · Zbl 1060.42025
[29] FornasierM. Quasi‐orthogonal decompositions of structured frames. J Math Anal Appl. 2004;289(1):180‐199. · Zbl 1058.46009
[30] DörflerM, FeichtingerHG, GröchenigK. Time‐frequency partitions for the Gelfand triple \(( S_0, L^2, S_0^\prime )\). Math Scand. 2006;98(1):81‐96. · Zbl 1215.42013
[31] SunW. G‐frames and g‐Riesz bases. J Math Anal Appl. 2006;322(1):437‐452. · Zbl 1129.42017
[32] AbdollahpourMR, NajatiA. G‐frames as sums of some g‐orthonormal bases. Kyungpook Math J. 2013;53(1):135‐141. · Zbl 1297.42041
[33] AbdollahpourMR, NajatiA. G‐frames and Hilbert‐Schmidt operators. Bull Iranian Math Soc. 2011;37(4):141‐155. · Zbl 1286.42041
[34] AsgariMS, RahimiH. Generalized frames for operators in Hilbert spaces. Infin Dimens Anal Quantum Probab Relat Top. 2014;17(2):20. · Zbl 1294.41023
[35] EnayatiF, AsgariMS. Duality properties for generalized frames. Banach J Math Anal. 2017;11(4):880‐898. · Zbl 1391.42035
[36] GuoXX. On redundancy, dilations and canonical duals of g‐frames in Hilbert spaces. Banach J Math Anal. 2015;9(4):81‐99. · Zbl 1408.46025
[37] LiJZ, ZhuYC. Exact g‐frames in Hilbert spaces. J Math Anal Appl. 2011;374(1):201‐209. · Zbl 1204.42047
[38] SunW. Stability of g‐frames. J Math Anal Appl. 2007;326(2):858‐868. · Zbl 1130.42307
[39] ZhangY, LiYZ. G‐frame and Riesz sequences in Hilbert spaces. Numer Funct Anal Optim. 2019;40(11):1268‐1290. · Zbl 1508.42040
[40] ZhuYC. Characterization of g‐frames and g‐Riesz bases in Hilbert spaces. Acta Math Sin(Engl Ser). 2008;24(10):1727‐1736. · Zbl 1247.42031
[41] LiL, LiPT. Characterizing the R‐duality of g‐frames. J Ineq Appl. 2019;69:14. · Zbl 1499.42137
[42] OsgooeiE, NajatiA, FaroughiMH. G‐riesz dual sequences for g‐Bessel sequences. Asian‐Eur J Math. 2014;7(3):15. · Zbl 1300.42007
[43] TakhtehF, KhosraviA. R‐duality in g‐frames. Rocky Mountain J Math. 2017;47(2):649‐665. · Zbl 1369.42022
[44] SadeghiG, ArefijamaalA. Von Neumann‐Schatten frames in separable Banach spaces. Mediterr J Math. 2012;9(3):525‐535. · Zbl 1266.46010
[45] ArefijamaalA, SadeghiG. Von Neumann‐Schatten dual frames and their perturbations. Results Math. 2016;69(3-4):431‐441. · Zbl 1346.46008
[46] ChoubinM, GhaemiMB, KimGH. Hilbert‐Schmidt frames: duality, weaving and stability. Int J Nonlinear Anal Appl. 2020;11(1):159‐173. · Zbl 1513.42113
[47] LiYN, LiYZ. Hilbert‐Schmidt frames and their duals. submitted.
[48] PoriaA. Approximation of the inverse frame operator and stability of Hilbert‐Schmidt frames. Mediterr J Math. 2017;14(4):22. · Zbl 1376.42044
[49] PoriaA. Some identities and inequalities for Hilbert‐Schmidt frames. Mediterr J Math. 2017;14(2):14. · Zbl 1404.42059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.