×

On the regulator problem for linear systems over rings and algebras. (English) Zbl 1475.93031

Summary: The regulator problem is solvable for a linear dynamical system \(\Sigma\) if and only if \(\Sigma\) is both pole assignable and state estimable. In this case, \(\Sigma\) is a canonical system (i.e., reachable and observable). When the ring \(R\) is a field or a Noetherian total ring of fractions the converse is true. Commutative rings which have the property that the regulator problem is solvable for every canonical system (RP-rings) are characterized as the class of rings where every observable system is state estimable (SE-rings), and this class is shown to be equal to the class of rings where every reachable system is pole-assignable (PA-rings) and the dual of a canonical system is also canonical (DP-rings).

MSC:

93B25 Algebraic methods
13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.)

References:

[1] J. W. Brewer , J. W. Bunce , and F. S. Van Vleck , Linear systems over commutative rings , Lecture Notes in Pure and Appl. Math. , vol. 104, Marcel Dekker, New York, USA, 1986. · Zbl 0607.13001
[2] J. A. Hermida-Alonso , On linear algebra over commutative rings , in: M. Hazewinkel (ed.), Handbook of Algebra , vol. 3, Elsevier Science, Amsterdam, The Netherlands, 2003, pp. 3-61. · Zbl 1082.15028
[3] R. E. Kalman , Lectures on controllability and observability , in: E. Evangelisti (ed.), Controllability and Observability , CIME Summer Schools, vol. 46, Springer, Berlin, Heidelberg, 2010.
[4] M. I. García-Planas , M. D. Magret , and L. E. Um , Monomial codes seen as invariant subspaces, Open Math. 15 (2017), 1099-1107. · Zbl 1418.94084
[5] N. DeCastro-García , Feedback equivalence of convolutional codes over finite rings, Open Math. 15 (2017), 1495-1508. · Zbl 1417.94110
[6] J. W. Brewer , D. Katz , and W. Ullery , Pole assignability in polynomial rings, power series rings, and Prüfer domains, J. Algebra 106 (1987), 265-286. · Zbl 0611.13016
[7] R. Marta García Fernández and M. V. Carriegos , On pointwise feedback invariants of linear parameter-varying systems, Univers. J. Appl. Math. 5 (2017), no. 5, 87-95.
[8] Z. Bartosiewicz , J. Belikov , Ü. Kotta , and W. Małgorzata , State feedback linearization of nonlinear control systems on homogeneous time scales, Nonlinear Anal. Hybrid Syst. 31 (2019), 69-85. · Zbl 1408.93046
[9] Y. Bouzini , T. Cluzeau , and A. Quadrat , On the computation of stabilizing controllers of multidimensional systems, IFAC PapersOnLine 52 (2019), no. 17, 88-93.
[10] J. Brewer , D. Katz , and W. Ullery , On the pole assignability property over commutative rings, J. Pure Appl. Algebra 48 (1987), 1-7. · Zbl 0653.13008
[11] K. H. Kiritsis , Arbitrary pole placement by constant output feedback for linear time invariant systems, Asian J. Control 19 (2017), no. 3, 832-839. · Zbl 1366.93231
[12] L. Liu , H. Xing , X. Cao , X. Cai , and Z. Fu , Nonfragile observer-based guaranteed cost finite-time control of discrete-time positive impulsive switched systems, Open Math. 17 (2019), 716-727. · Zbl 1448.93284
[13] L. Pekař and R. Prokop , The revision and extension of the RMS ring for time delay systems, Bull. Pol. Ac.: Tech. 65 (2017), no. 3, 341-350.
[14] A. Sáez-Schwedt and T. Sánchez-Giralda , Strong feedback cyclization for systems over rings, Systems Control Lett. 57 (2008), 71-77. · Zbl 1129.93008
[15] W. S. Ching and B. F. Wyman , Duality and the regulator problem for linear systems over commutative rings, J. Comput. Syst. Sci. 14 (1977), no. 3, 360-368. · Zbl 0382.49027
[16] J. A. Hermida-Alonso and T. Sánchez-Giralda , On the duality principle for linear dynamical systems over commutative rings, Linear Algebra Appl. 135 (1990), 175-180. · Zbl 0719.93009
[17] Y. Rouchaleau and B. F. Wyman , Linear dynamical systems over integral domains, J. Comput. Syst. Sci. 9 (1974), 129-142. · Zbl 0304.34041
[18] M. V. Carriegos , J. A. Hermida-Alonso , and T. Sánchez-Giralda , Pole-shifting for linear systems over commutative rings, Linear Algebra Appl. 346 (2002), 97-107. · Zbl 1008.93022
[19] X. Zheng and B. Kong , Constacyclic codes over Fpm[u1,…,uk]∕⟨{ui2=ui,uiuj=ujui}⟩ , Open Math. 16 (2018), 490-497. · Zbl 1391.94859
[20] G. Bini and F. Flamini , Finite commutative rings and their applications , The Springer International Series in Engineering and Computer Science 680 , Springer, US, 2002. · Zbl 1095.13032
[21] H. Gluesing-Luerssen , U. Helmke , and J. I. Iglesias Curto , Algebraic decoding for doubly cyclic convolutional codes, Adv. Math. Commun. 4 (2010), 83-99. · Zbl 1190.94036
[22] J. A. Huckaba , Commutative Rings with Zero Divisors , Pure and Applied Mathematics , vol. 117, Marcel Dekker, New York, USA, 1988. · Zbl 0637.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.