×

Deformations of GR, geometrodynamics and reality conditions. (English) Zbl 1481.83013

Summary: In four dimensions complexified general relativity (GR) can be non-trivially deformed: there exists an (infinite-parameter) set of modifications all having the same count of degrees of freedom. It is trivial to impose reality conditions that give versions of the deformed theories corresponding to Riemannian and split metric signatures. We revisit the Lorentzian signature case. To make the problem tractable, we restrict our attention to a four-parameter set of deformations that are natural extensions of Ashtekar’s Hamiltonian formalism for GR. The Hamiltonian of the later is a linear combination of EEE and EEB. We consider theories for which the Hamiltonian constraint is a general linear combination of EEE, EEB, EBB and BBB. Our main result is the computation of the evolution equations for the modified theories as geometrodynamics evolution equations for the three-metric. We show that only for GR (and the related theory of self-dual gravity) these equations close in the sense that they can be written in terms of only the metric and its first time derivative. Modified theories are therefore seen to be essentially non-metric in the sense that their dynamics cannot be reduced to geometrodynamics. We then show this to be related to the problem with Lorentzian reality conditions: the conditions of reality of the three-metric and its time derivative are not acceptable because they are not preserved by the dynamics. Put differently, their conservation implies extra reality conditions on higher-order time derivatives, which then leaves no room for degrees of freedom.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E05 Geometrodynamics and the holographic principle
14D15 Formal methods and deformations in algebraic geometry
70H45 Constrained dynamics, Dirac’s theory of constraints

References:

[1] Ashtekar, A., New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244 (1986) · doi:10.1103/physrevlett.57.2244
[2] Ashtekar, A., New Hamiltonian formulation of general relativity, Phys. Rev. D, 36, 1587 (1987) · doi:10.1103/physrevd.36.1587
[3] Capovilla, R.; Jacobson, T.; Dell, J., General relativity without the metric, Phys. Rev. Lett., 63, 2325 (1989) · doi:10.1103/physrevlett.63.2325
[4] Capovilla, R., Generally covariant gauge theories, Nucl. Phys. B, 373, 233 (1992) · doi:10.1016/0550-3213(92)90456-l
[5] Bengtsson, I., The cosmological constants, Phys. Lett. B, 254, 55 (1991) · doi:10.1016/0370-2693(91)90395-7
[6] Bengtsson, I., Selfduality and the metric in a family of neighbors of Einstein’s equations, J. Math. Phys., 32, 3158 (1991) · Zbl 0741.53049 · doi:10.1063/1.529473
[7] Krasnov, K., Renormalizable non-metric quantum gravity? (2006)
[8] Bengtsson, I., Note on non-metric gravity, Mod. Phys. Lett. A, 22, 1643 (2007) · Zbl 1143.83313 · doi:10.1142/s0217732307023924
[9] Krasnov, K., Gravity as a diffeomorphism invariant gauge theory, Phys. Rev. D, 84 (2011) · doi:10.1103/physrevd.84.024034
[10] Krasnov, K., Pure connection action principle for general relativity, Phys. Rev. Lett., 106 (2011) · doi:10.1103/physrevlett.106.251103
[11] Freidel, L., Modified gravity without new degrees of freedom (2008)
[12] Krasnov, K., Effective metric Lagrangians from an underlying theory with two propagating degrees of freedom, Phys. Rev. D, 81 (2010) · doi:10.1103/physrevd.81.084026
[13] Celada, M.; González, D.; Montesinos, M., BF gravity, Class. Quantum Grav., 33 (2016) · Zbl 1351.83041 · doi:10.1088/0264-9381/33/21/213001
[14] Krasnov, K., Gravity as BF theory plus potential, Int. J. Mod. Phys. A, 24, 2776 (2009) · Zbl 1168.83312 · doi:10.1142/s0217751x09046151
[15] Krasnov, K., Field redefinitions and Plebanski formalism for GR, Class. Quantum Grav., 35 (2018) · Zbl 1409.83014 · doi:10.1088/1361-6382/aac844
[16] Krasnov, K., Self-dual gravity, Class. Quantum Grav., 34 (2017) · Zbl 1369.83028 · doi:10.1088/1361-6382/aa65e5
[17] Krasnov, K., On deformations of Ashtekar’s constraint algebra, Phys. Rev. Lett., 100 (2008) · Zbl 1228.83019 · doi:10.1103/physrevlett.100.081102
[18] Krasnov, K., General relativity from three-forms in seven dimensions, Phys. Lett. B, 772, 300 (2017) · Zbl 1379.83022 · doi:10.1016/j.physletb.2017.06.025
[19] Herfray, Y.; Krasnov, K.; Scarinci, C.; Shtanov, Y., A 4D gravity theory and G_2-holonomy manifolds, Adv. Theor. Math. Phys., 22, 2001 (2018) · Zbl 07430962 · doi:10.4310/atmp.2018.v22.n8.a5
[20] York, J.; James, W., Kinematics and dynamics of general relativity, 83-126 (1978) · Zbl 0418.58016
[21] Lewandowski, J.; Okolów, A., 2-form gravity of the Lorentzian signature, Class. Quantum Grav., 17, L47-L51 (2000) · Zbl 1140.83311 · doi:10.1088/0264-9381/17/3/101
[22] Plebanski, J. F., On the separation of Einsteinian substructures, J. Math. Phys., 18, 2511 (1977) · Zbl 0368.53032 · doi:10.1063/1.523215
[23] De Pietri, R.; Freidel, L., so(4) Plebanski action and relativistic spin foam model, Class. Quantum Grav., 16, 2187 (1999) · Zbl 0942.83050 · doi:10.1088/0264-9381/16/7/303
[24] Perez, A., The spin foam approach to quantum gravity, Living Rev. Relativ., 16, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.