×

Averaging over moduli in deformed WZW models. (English) Zbl 1472.81206

Summary: WZW models live on a moduli space parameterized by current-current deformations. The moduli space defines an ensemble of conformal field theories, which generically have \(N\) abelian conserved currents and central charge \(c > N \). We calculate the average partition function and show that it can be interpreted as a sum over 3-manifolds. This suggests that the ensemble-averaged theory has a holographic dual, generalizing recent results on Narain CFTs. The bulk theory, at the perturbative level, is identified as \( \mathrm{U}(1)^{2N}\) Chern-Simons theory coupled to additional matter fields. From a mathematical perspective, our principal result is a Siegel-Weil formula for the characters of an affine Lie algebra.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
58J28 Eta-invariants, Chern-Simons invariants
83E05 Geometrodynamics and the holographic principle

References:

[1] Coleman, SR, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B, 307, 867 (1988) · doi:10.1016/0550-3213(88)90110-1
[2] Giddings, SB; Strominger, A., Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B, 307, 854 (1988) · doi:10.1016/0550-3213(88)90109-5
[3] P. Saad, S. H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
[4] P. Saad, S. H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
[5] P. Saad, Late Time Correlation Functions, Baby Universes, and ETH in JT Gravity, arXiv:1910.10311 [INSPIRE].
[6] Marolf, D.; Maxfield, H., Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information, JHEP, 08, 044 (2020) · Zbl 1454.83042 · doi:10.1007/JHEP08(2020)044
[7] Cotler, J.; Jensen, K., AdS_3gravity and random CFT, JHEP, 04, 033 (2021) · Zbl 1462.83014 · doi:10.1007/JHEP04(2021)033
[8] Eberhardt, L., Partition functions of the tensionless string, JHEP, 03, 176 (2021) · Zbl 1461.83079 · doi:10.1007/JHEP03(2021)176
[9] Eberhardt, L., Summing over Geometries in String Theory, JHEP, 05, 233 (2021) · Zbl 1466.83120 · doi:10.1007/JHEP05(2021)233
[10] J. McNamara and C. Vafa, Baby Universes, Holography, and the Swampland, arXiv:2004.06738 [INSPIRE].
[11] Maldacena, JM; Maoz, L., Wormholes in AdS, JHEP, 02, 053 (2004) · doi:10.1088/1126-6708/2004/02/053
[12] Arkani-Hamed, N.; Orgera, J.; Polchinski, J., Euclidean wormholes in string theory, JHEP, 12, 018 (2007) · Zbl 1246.81199 · doi:10.1088/1126-6708/2007/12/018
[13] P. Saad, S. H. Shenker, D. Stanford and S. Yao, Wormholes without averaging, arXiv:2103.16754 [INSPIRE].
[14] B. Mukhametzhanov, Half-wormhole in SYK with one time point, arXiv:2105.08207 [INSPIRE].
[15] Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[16] G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
[17] Ghosh, A.; Maxfield, H.; Turiaci, GJ, A universal Schwarzian sector in two-dimensional conformal field theories, JHEP, 05, 104 (2020) · Zbl 1437.83094 · doi:10.1007/JHEP05(2020)104
[18] Maxfield, H.; Turiaci, GJ, The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral, JHEP, 01, 118 (2021) · Zbl 1459.83036 · doi:10.1007/JHEP01(2021)118
[19] Cotler, J.; Jensen, K., AdS_3wormholes from a modular bootstrap, JHEP, 11, 058 (2020) · Zbl 1456.83057 · doi:10.1007/JHEP11(2020)058
[20] Afkhami-Jeddi, N.; Cohn, H.; Hartman, T.; Tajdini, A., Free partition functions and an averaged holographic duality, JHEP, 01, 130 (2021) · Zbl 1459.83030 · doi:10.1007/JHEP01(2021)130
[21] Maloney, A.; Witten, E., Averaging over Narain moduli space, JHEP, 10, 187 (2020) · Zbl 1456.83067 · doi:10.1007/JHEP10(2020)187
[22] Gaberdiel, MR; Gopakumar, R., Tensionless string spectra on AdS_3, JHEP, 05, 085 (2018) · Zbl 1391.81160 · doi:10.1007/JHEP05(2018)085
[23] Eberhardt, L.; Gaberdiel, MR; Gopakumar, R., Deriving the AdS_3/CFT_2correspondence, JHEP, 02, 136 (2020) · doi:10.1007/JHEP02(2020)136
[24] Sachdev, S.; Ye, J., Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett., 70, 3339 (1993) · doi:10.1103/PhysRevLett.70.3339
[25] A. Kitaev, A simple model of quantum holography, https://online.kitp.ucsb.edu/online/entangled15/kitaev/.
[26] S. Datta, S. Duary, P. Kraus, P. Maity and A. Maloney, Adding Flavor to the Narain Ensemble, arXiv:2102.12509 [INSPIRE].
[27] N. Benjamin, C. A. Keller, H. Ooguri and I. G. Zadeh, Narain to Narnia, arXiv:2103.15826 [INSPIRE].
[28] M. Ashwinkumar, M. Dodelson, A. Kidambi, J. M. Leedom and M. Yamazaki, Chern-Simons Invariants from Ensemble Averages, arXiv:2104.14710 [INSPIRE]. · Zbl 1469.58016
[29] Pérez, A.; Troncoso, R., Gravitational dual of averaged free CFT’s over the Narain lattice, JHEP, 11, 015 (2020) · Zbl 1456.83030 · doi:10.1007/JHEP11(2020)015
[30] Dymarsky, A.; Shapere, A., Quantum stabilizer codes, lattices, and CFTs, JHEP, 21, 160 (2020) · Zbl 1461.81090
[31] A. Dymarsky and A. Shapere, Comments on the holographic description of Narain theories, arXiv:2012.15830 [INSPIRE].
[32] Meruliya, V.; Mukhi, S.; Singh, P., Poincaré Series, 3d Gravity and Averages of Rational CFT, JHEP, 04, 267 (2021) · Zbl 1462.83044 · doi:10.1007/JHEP04(2021)267
[33] V. Meruliya and S. Mukhi, AdS_3Gravity and RCFT Ensembles with Multiple Invariants, arXiv:2104.10178 [INSPIRE]. · Zbl 1469.83020
[34] Förste, S.; Roggenkamp, D., Current current deformations of conformal field theories, and WZW models, JHEP, 05, 071 (2003) · doi:10.1088/1126-6708/2003/05/071
[35] Gepner, D., New Conformal Field Theories Associated with Lie Algebras and their Partition Functions, Nucl. Phys. B, 290, 10 (1987) · doi:10.1016/0550-3213(87)90176-3
[36] Gepner, D.; Qiu, Z-a, Modular Invariant Partition Functions for Parafermionic Field Theories, Nucl. Phys. B, 285, 423 (1987) · doi:10.1016/0550-3213(87)90348-8
[37] Gaberdiel, MR; Gopakumar, R., An AdS_3Dual for Minimal Model CFTs, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.066007
[38] Kiritsis, E.; Niarchos, V., Large-N limits of 2d CFTs, Quivers and AdS_3duals, JHEP, 04, 113 (2011) · Zbl 1250.81086 · doi:10.1007/JHEP04(2011)113
[39] Kiritsis, E., Exact duality symmetries in CFT and string theory, Nucl. Phys. B, 405, 109 (1993) · Zbl 1009.81551 · doi:10.1016/0550-3213(93)90428-R
[40] Harlow, D.; Shaghoulian, E., Global symmetry, Euclidean gravity, and the black hole information problem, JHEP, 04, 175 (2021) · Zbl 1462.83016 · doi:10.1007/JHEP04(2021)175
[41] Chen, Y.; Lin, HW, Signatures of global symmetry violation in relative entropies and replica wormholes, JHEP, 03, 040 (2021) · Zbl 1461.83016 · doi:10.1007/JHEP03(2021)040
[42] Hsin, P-S; Iliesiu, LV; Yang, Z., A violation of global symmetries from replica wormholes and the fate of black hole remnants, Class. Quant. Grav., 38, 194004 (2021) · Zbl 1479.83055 · doi:10.1088/1361-6382/ac2134
[43] A. Belin, J. De Boer, P. Nayak and J. Sonner, Charged Eigenstate Thermalization, Euclidean Wormholes and Global Symmetries in Quantum Gravity, arXiv:2012.07875 [INSPIRE].
[44] Misner, CW; Wheeler, JA, Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Annals Phys., 2, 525 (1957) · Zbl 0078.19106 · doi:10.1016/0003-4916(57)90049-0
[45] Polchinski, J., Monopoles, duality, and string theory, Int. J. Mod. Phys. A, 19S1, 145 (2004) · Zbl 1080.81582 · doi:10.1142/S0217751X0401866X
[46] Banks, T.; Seiberg, N., Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.084019
[47] Harlow, D.; Ooguri, H., Constraints on Symmetries from Holography, Phys. Rev. Lett., 122, 191601 (2019) · doi:10.1103/PhysRevLett.122.191601
[48] Wess, J.; Zumino, B., Consequences of anomalous Ward identities, Phys. Lett. B, 37, 95 (1971) · doi:10.1016/0370-2693(71)90582-X
[49] Witten, E., Global Aspects of Current Algebra, Nucl. Phys. B, 223, 422 (1983) · doi:10.1016/0550-3213(83)90063-9
[50] Witten, E., Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys., 92, 455 (1984) · Zbl 0536.58012 · doi:10.1007/BF01215276
[51] S. P. Novikov, The Hamiltonian formalism and a many valued analog of Morse theory, Usp. Mat. Nauk37N5 (1982) 3 [INSPIRE]. · Zbl 0571.58011
[52] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, U.S.A. (1997), [DOI] [INSPIRE]. · Zbl 0869.53052
[53] V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press (1990). · Zbl 0716.17022
[54] Yang, S-K, Marginal Deformation of Minimal N = 2 Superconformal Field Theories and the Witten Index, Phys. Lett. B, 209, 242 (1988) · doi:10.1016/0370-2693(88)90940-9
[55] Chaudhuri, S.; Schwartz, JA, A Criterion for Integrably Marginal Operators, Phys. Lett. B, 219, 291 (1989) · doi:10.1016/0370-2693(89)90393-6
[56] Siegel, CL, Indefinite quadratische Formen und Funktionentheorie I, Math. Ann., 124, 17 (1951) · Zbl 0043.27402 · doi:10.1007/BF01343549
[57] Siegel, CL, Indefinite quadratische Formen und Funktionentheorie II, Math. Ann., 124, 364 (1951) · Zbl 0046.27401 · doi:10.1007/BF01343576
[58] Siegel, CL, On the theory of indefinite quadratic forms, Annals Math., 45, 577 (1944) · Zbl 0063.07006 · doi:10.2307/1969191
[59] Siegel, CL, Lectures on Quadratic Forms (1957), Bombay, India: Tata Institute of Fundamental Research, Bombay, India
[60] Maloney, A.; Witten, E., Quantum Gravity Partition Functions in Three Dimensions, JHEP, 02, 029 (2010) · Zbl 1270.83022 · doi:10.1007/JHEP02(2010)029
[61] Benjamin, N.; Ooguri, H.; Shao, S-H; Wang, Y., Light-cone modular bootstrap and pure gravity, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.066029
[62] Maldacena, JM; Strominger, A., AdS_3black holes and a stringy exclusion principle, JHEP, 12, 005 (1998) · Zbl 0951.83019 · doi:10.1088/1126-6708/1998/12/005
[63] Castro, A.; Gaberdiel, MR; Hartman, T.; Maloney, A.; Volpato, R., The Gravity Dual of the Ising Model, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.024032
[64] Jian, C-M; Ludwig, AWW; Luo, Z-X; Sun, H-Y; Wang, Z., Establishing strongly-coupled 3D AdS quantum gravity with Ising dual using all-genus partition functions, JHEP, 10, 129 (2020) · Zbl 1456.83026 · doi:10.1007/JHEP10(2020)129
[65] R. Dijkgraaf, J. M. Maldacena, G. W. Moore and E. P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
[66] Dabholkar, A.; Gomes, J.; Murthy, S., Localization & Exact Holography, JHEP, 04, 062 (2013) · Zbl 1342.81415 · doi:10.1007/JHEP04(2013)062
[67] Porrati, M.; Yu, C., Kac-Moody and Virasoro Characters from the Perturbative Chern-Simons Path Integral, JHEP, 05, 083 (2019) · Zbl 1416.81097 · doi:10.1007/JHEP05(2019)083
[68] Witten, E., Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[69] Witten, E., On holomorphic factorization of WZW and coset models, Commun. Math. Phys., 144, 189 (1992) · Zbl 0766.53068 · doi:10.1007/BF02099196
[70] Isidro, JM; Labastida, JMF; Ramallo, AV, Coset constructions in Chern-Simons gauge theory, Phys. Lett. B, 282, 63 (1992) · doi:10.1016/0370-2693(92)90480-R
[71] Gawȩdzki, K., Boundary WZW, G/H, G / G and CS theories, Annales Henri Poincaré, 3, 847 (2002) · Zbl 1026.81055 · doi:10.1007/s00023-002-8639-0
[72] S. Gukov, E. Martinec, G. W. Moore and A. Strominger, Chern-Simons gauge theory and the AdS_3/CFT_2correspondence, in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, (2004), pp. 1606-1647, DOI [hep-th/0403225] [INSPIRE]. · Zbl 1082.81073
[73] Hartman, T.; Mazáč, D.; Rastelli, L., Sphere Packing and Quantum Gravity, JHEP, 12, 048 (2019) · Zbl 1431.83053 · doi:10.1007/JHEP12(2019)048
[74] Afkhami-Jeddi, N.; Cohn, H.; Hartman, T.; de Laat, D.; Tajdini, A., High-dimensional sphere packing and the modular bootstrap, JHEP, 12, 066 (2020) · Zbl 1457.81095 · doi:10.1007/JHEP12(2020)066
[75] Witten, E., On string theory and black holes, Phys. Rev. D, 44, 314 (1991) · Zbl 0900.53037 · doi:10.1103/PhysRevD.44.314
[76] J. M. Maldacena and H. Ooguri, Strings in AdS_3and SL(2, ℝ) WZW model 1. The Spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE]. · Zbl 1036.81033
[77] Israel, D.; Kounnas, C.; Petropoulos, MP, Superstrings on NS5 backgrounds, deformed AdS_3and holography, JHEP, 10, 028 (2003) · doi:10.1088/1126-6708/2003/10/028
[78] D. Orlando, AdS_2× S^2as an exact heterotic string background, in NATO Advanced Study Institute and EC Summer School on String Theory: From Gauge Interactions to Cosmology, (2005), pp. 345-349, DOI [hep-th/0502213] [INSPIRE].
[79] Detournay, S.; Israel, D.; Lapan, JM; Romo, M., String Theory on Warped AdS_3and Virasoro Resonances, JHEP, 01, 030 (2011) · Zbl 1214.81206 · doi:10.1007/JHEP01(2011)030
[80] Giribet, G.; Oliva, J.; Stuardo, R., Comments on single trace \(T\overline{T}\) and other current-current deformations, Phys. Rev. D, 103, 126010 (2021) · doi:10.1103/PhysRevD.103.126010
[81] Ginsparg, PH, Comment on Toroidal Compactification of Heterotic Superstrings, Phys. Rev. D, 35, 648 (1987) · doi:10.1103/PhysRevD.35.648
[82] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann.116 (1939) 511. · Zbl 0020.20201
[83] M.-F. Vignéras, Séries thêta des formes quadratiques indéfinies, in Modular Functions of One Variable VI, J.-P. Serre and D.B. Zagier, eds., Berlin, Heidelberg, pp. 227-239, Springer Berlin Heidelberg, (1977). · Zbl 0363.10016
[84] D. Goldfeld, On Convolutions of Non-Holomorphic Eisenstein Series, Adv. Math.39 (1981) 240. · Zbl 0458.10022
[85] H. Iwaniec, Topics in classical automorphic forms, vol. 17 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, U.S.A. (1997), [doi:10.1090/gsm/017]. · Zbl 0905.11023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.