×

Pole-fitting for complex functions: enhancing standard techniques by artificial-neural-network classifiers and regressors. (English) Zbl 07788822

Summary: Motivated by a use case in theoretical hadron physics, we revisit an application of a pole-sum fit to dressing functions of a confined quark propagator. More precisely, we investigate approaches to determine the number and positions of the singularities closest to the origin for a function that is only known numerically on a specific finite grid of values on the positive real axis. For this problem, we compare the efficiency of standard techniques, like the Levenberg-Marquardt algorithm, to a pure artificial-neural-network approach as well as a combination of these two. This combination is more efficient than any of the two techniques separately. Such an approach is generalizable to similar situations, where the positions of poles of a function in a complex variable must be quickly and reliably estimated from real-axis information alone.

MSC:

68-XX Computer science
81-XX Quantum theory

References:

[1] Gross, D. J.; Wilczek, F., Asymptotically free gauge theories. I, Phys. Rev. D, 8, 10, 3633-3652 (1973)
[2] Politzer, H. D., Asymptotic freedom: an approach to strong interactions, Phys. Rep., 14, 129-180 (1974)
[3] Dyson, F. J., The s matrix in quantum electrodynamics, Phys. Rev., 75, 1736-1755 (1949) · Zbl 0033.14201
[4] Schwinger, J. S., On the Green’s functions of quantized fields. 1, Proc. Natl. Acad. Sci., 37, 452-455 (1951) · Zbl 0044.43001
[5] Schwinger, J. S., On the Green’s functions of quantized fields. 2, Proc. Natl. Acad. Sci., 37, 455-459 (1951) · Zbl 0044.43001
[6] Bethe, H. A.; Salpeter, E. E., A relativistic equation for bound-state problems, Phys. Rev., 82, 309 (1951) · Zbl 0044.43103
[7] Salpeter, E. E.; Bethe, H. A., A relativistic equation for bound state problems, Phys. Rev., 84, 1232-1242 (1951) · Zbl 0044.43103
[8] Blank, M.; Krassnigg, A., Matrix algorithms for solving (in)homogeneous bound state equations, Comput. Phys. Commun., 182, 1391 (2011) · Zbl 1262.81257
[9] Sanchis-Alepuz, H.; Williams, R., Recent developments in bound-state calculations using the Dyson-Schwinger and Bethe-Salpeter equations, Comput. Phys. Commun., 232, 1-21 (2018) · Zbl 07694784
[10] Sauli, V., The quark spectral functions and the hadron vacuum polarization from application of DSEs in Minkowski space, Few-Body Syst., 61, 3, 23 (2020)
[11] Eichmann, G., Hadron properties from QCD bound-state equations (2009), University of Graz, Ph.D. thesis
[12] Mader, V.; Eichmann, G.; Blank, M.; Krassnigg, A., Hadronic decays of mesons and baryons in the Dyson-Schwinger approach, Phys. Rev. D, 84, Article 034012 pp. (2011)
[13] Bhagwat, M. S.; Maris, P., Vector meson form factors and their quark-mass dependence, Phys. Rev. C, 77, Article 025203 pp. (2008)
[14] Williams, R.; Fischer, C. S.; Heupel, W., Light mesons in QCD and unquenching effects from the 3PI effective action, Phys. Rev. D, 93, 3, Article 034026 pp. (2016)
[15] Souchlas, N.; Stratakis, D., Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons, Phys. Rev. D, 81, Article 114019 pp. (2010)
[16] Jain, P.; Munczek, H. J., q anti-q bound states in the Bethe-Salpeter formalism, Phys. Rev. D, 48, 5403-5411 (1993)
[17] Munczek, H. J.; Jain, P., Relativistic pseudoscalar q anti-q bound states: results on Bethe-Salpeter wave functions and decay constants, Phys. Rev. D, 46, 438-445 (1992)
[18] Maris, P.; Tandy, P. C., Bethe-Salpeter study of vector meson masses and decay constants, Phys. Rev. C, 60, Article 055214 pp. (1999)
[19] Krassnigg, A.; Roberts, C. D., Dyson-Schwinger equations: an instrument for hadron physics, Nucl. Phys. A, 737, 7-15 (2004)
[20] Fischer, C. S.; Watson, P.; Cassing, W., Probing unquenching effects in the gluon polarisation in light mesons, Phys. Rev. D, 72, Article 094025 pp. (2005)
[21] Krassnigg, A., Excited mesons in a Bethe-Salpeter approach, PoS, CONFINEMENT8, Article 075 pp. (2008)
[22] Windisch, A.; Gallien, T.; Schwarzlmüller, C., Deep reinforcement learning for complex evaluation of one-loop diagrams in quantum field theory, Phys. Rev. E, 101, 3, Article 033305 pp. (2020)
[23] Munczek, H. J.; Nemirovsky, A. M., The ground state q anti-q mass spectrum in QCD, Phys. Rev. D, 28, 181 (1983)
[24] Bhagwat, M. S.; Höll, A.; Krassnigg, A.; Roberts, C. D.; Tandy, P. C., Aspects and consequences of a dressed-quark-gluon vertex, Phys. Rev. C, 70, Article 035205 pp. (2004)
[25] Gomez-Rocha, M.; Hilger, T.; Krassnigg, A., Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the B(c)* meson mass, Phys. Rev. D, 93, Article 074010 pp. (2016)
[26] Bhagwat, M. S.; Pichowsky, M. A.; Tandy, P. C., Confinement phenomenology in the Bethe-Salpeter equation, Phys. Rev. D, 67, Article 054019 pp. (2003)
[27] Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mulbregt, P., SciPy 1.0 contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261-272 (2020)
[28] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168 (1944) · Zbl 0063.03501
[29] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 2, 431 (1963) · Zbl 0112.10505
[30] Yuan, Y., Recent advances in trust region algorithms, Math. Program., 151, 249-281 (2015) · Zbl 1317.65141
[31] Powell, M. J.D., A new algorithm for unconstrained optimization, (Rosen, J.; Mangasarian, O.; Ritter, K., Nonlinear Programming (1970), Academic Press), 31-65 · Zbl 0228.90043
[32] Voglis, C.; Lagaris, I. E., A rectangular trust region dogleg approach for unconstrainedand bound constrained nonlinear optimization (2014)
[33] Newville, M.; Stensitzki, T.; Allen, D. B.; Ingargiola, A., LMFIT: non-linear least-square minimization and curve-fitting for Python (0.8.0), (Zenodo (2014))
[34] Wales, D. J.; Doye, J. P.K., Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A, 101, 28, 5111-5116 (1997)
[35] Broyden, G. C., The convergence of a class of double-rank minimization algorithms 1. General considerations, IMA J. Appl. Math., 6, 1, 76-90 (1970) · Zbl 0223.65023
[36] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 3, 317-322 (1970) · Zbl 0207.17402
[37] Goldfarb, D., A family of variable-metric methods derived by variational means, Math. Compet., 24, 23-26 (1970) · Zbl 0196.18002
[38] Shanno, D. F., Conditioning of quasi-Newton methods for function minimization, Math. Compet., 24, 647-656 (1970) · Zbl 0225.65073
[39] Lasdon, L.; Duarte, A.; Glover, F.; Laguna, M.; Martí, R., Adaptive memory programming for constrained global optimization, Comput. Oper. Res., 37, 8, 1500-1509 (2010), Operations Research and Data Mining in Biological Systems · Zbl 1183.90459
[40] Powell, M. J.D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 2, 155-162 (1964) · Zbl 0132.11702
[41] Nash, S. G., Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21, 4, 770-788 (1984) · Zbl 0558.65041
[42] Nash, S. G., Preconditioning of truncated Newton methods, SIAM J. Sci. Stat. Comput., 6, 3, 599-616 (1985) · Zbl 0592.65038
[43] Tsallis, C.; Stariolo, D. A., Generalized simulated annealing, Phys. A, Stat. Mech. Appl., 233, 1, 395-406 (1996)
[44] Xiang, Y.; Sun, D.; Fan, W.; Gong, X., Generalized simulated annealing algorithm and its application to the Thomson model, Phys. Lett. A, 233, 3, 216-220 (1997)
[45] Xiang, Y.; Gong, X. G., Efficiency of generalized simulated annealing, Phys. Rev. E, 62, 4473-4476 (2000)
[46] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 6, 409-436 (1952) · Zbl 0048.09901
[47] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208 (1995) · Zbl 0836.65080
[48] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 4, 550-560 (1997) · Zbl 0912.65057
[49] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 4, 308-313 (1965) · Zbl 0229.65053
[50] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer · Zbl 1104.65059
[51] Powell, M. J.D., A view of algorithms for optimization without derivatives (2007), Cambridge University Technical Report DAMTP
[52] Storn, R., On the usage of differential evolution for function optimization, (Proceedings of North American Fuzzy Information Processing (1996)), 519-523
[53] Storn, R.; Price, K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341-359 (1997) · Zbl 0888.90135
[54] Le, T. A.; Baydin, A. G.; Zinkov, R.; Wood, F., Using synthetic data to train neural networks is model-based reasoning, (2017 International Joint Conference on Neural Networks (IJCNN) (2017)), 3514-3521
[55] Hilger, T.; Gómez-Rocha, M.; Krassnigg, A.; Lucha, W., Aspects of open-flavour mesons in a comprehensive DSBSE study, Eur. Phys. J. A, 53, 213 (2017)
[56] Svozil, D.; Kvasnicka, V.; Pospichal, J., Introduction to multi-layer feed-forward neural networks, Chemom. Intell. Lab. Syst., 39, 1, 43-62 (1997)
[57] Kingma, D. P.; Ba Adam, J., A method for stochastic optimization, (Proceedings of the 3rd International Conference for Learning Representations. Proceedings of the 3rd International Conference for Learning Representations, San Diego (2015))
[58] Fukushima, K., Visual feature extraction by a multilayered network of analog threshold elements, IEEE Trans. Syst. Sci. Cybern., 5, 4, 322-333 (1969) · Zbl 0185.47902
[59] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning internal representations by error propagation, (Rumelhart, D. E.; Mcclelland, J. L., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations (1986), MIT Press: MIT Press Cambridge, MA), 318-362
[60] Wang, W.; Huang, Y.; Wang, Y.; Wang, L., Generalized autoencoder: a neural network framework for dimensionality reduction, (2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (2014)), 496-503
[61] Perrone, M. P.; Cooper, L. N., When networks disagree: ensemble methods for hybrid neural networks, (How We Learn; How We Remember: Toward an Understanding of Brain and Neural Systems. How We Learn; How We Remember: Toward an Understanding of Brain and Neural Systems, World Scientific Series in 20th Century Physics, vol. 10 (1995), World Scientific), 341 · Zbl 0913.92005
[62] Ball, J. S.; Chiu, T.-W., Analytic properties of the vertex function in gauge theories. I, Phys. Rev. D, 22, 2542 (1980)
[63] Maris, P.; Roberts, C. D., Dyson-Schwinger equations: a tool for hadron physics, Int. J. Mod. Phys. E, 12, 297-365 (2003)
[64] Blank, M.; Krassnigg, A.; Maas, A., ρ meson, Bethe-Salpeter equation, and the far infrared, Phys. Rev. D, 83, Article 034020 pp. (2011)
[65] Alkofer, R.; Watson, P.; Weigel, H., Mesons in a Poincaré covariant Bethe-Salpeter approach, Phys. Rev. D, 65, Article 094026 pp. (2002)
[66] Curtis, D. C.; Pennington, M. R., Truncating the Schwinger-Dyson equations: how multiplicative renormalizability and the Ward identity restrict the three point vertex in QED, Phys. Rev. D, 42, 4165-4169 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.