×

A family of integrable transformations of centroaffine polygons: geometrical aspects. (Sur une famille de transformations intégrables de polygones centroaffines : aspects géométriques.) (English. French summary) Zbl 07877214

Summary: Two polygons, \((P_1,\dots,P_n)\) and \((Q_1,\dots,Q_n)\) in \(\mathbb{R}^2\) are \(c\)-related if \(\det (P_i,P_{i+1})=\det (Q_i, Q_{i+1})\) and \(\det (P_i, Q_i)=c\) for all \(i\). This relation extends to twisted polygons (polygons with monodromy), and it descends to the moduli space of \(\mathrm{SL} (2,\mathbb{R})\)-equivalent polygons. This relation is an equiaffine analog of the discrete bicycle correspondence studied by a number of authors. We study the geometry of this relations, present its integrals, and show that, in an appropriate sense, these relations, considered for different values of the constants \(c\), commute. We relate this topic with the dressing chain of Veselov and Shabat. The case of small-gons is investigated in detail.

MSC:

37J70 Completely integrable discrete dynamical systems
37J39 Relations of finite-dimensional Hamiltonian and Lagrangian systems with topology, geometry and differential geometry (symplectic geometry, Poisson geometry, etc.)
53D30 Symplectic structures of moduli spaces
53A15 Affine differential geometry

References:

[1] Adler, Vsevolod E., Recuttings of polygons, Funct. Anal. Appl., 27, 2, 141-145, 1993 · Zbl 0812.58072 · doi:10.1007/BF01085984
[2] Adler, Vsevolod E., Integrable deformations of a polygon, Physica D, 87, 1-4, 52-57, 1995 · Zbl 1194.35353 · doi:10.1016/0167-2789(95)00124-M
[3] Affolter, Niklas; George, Terrence; Ramassamy, Sanjay, Cross-ratio dynamics and the dimer cluster integrable system, 2021
[4] Arnold, Maxim; Fuchs, Dmitry; Izmestiev, Ivan; Tabachnikov, Sergei, Cross-ratio dynamics on ideal polygons, Int. Math. Res. Not., 9, 6770-6853, 2022 · Zbl 1490.51014 · doi:10.1093/imrn/rnaa289
[5] Bialy, Misha; Bor, Gil; Tabachnikov, Sergei, Self-Bäcklund curves in centroaffine geometry and Lamé’s equation, Commun. Am. Math. Soc., 2, 232-282, 2022 · Zbl 07750993 · doi:10.1090/cams/9
[6] Bor, Gil; Levi, Mark; Perline, Ron; Tabachnikov, Sergei, Tire tracks and integrable curve evolution, Int. Math. Res. Not., 9, 2698-2768, 2020 · Zbl 1479.70036 · doi:10.1093/imrn/rny087
[7] Hoffmann, Tim, Discrete differential geometry, 38, Discrete Hashimoto surfaces and a doubly discrete smoke-ring flow, 95-115, 2008, Birkhäuser · Zbl 1146.53003 · doi:10.1007/978-3-7643-8621-4_5
[8] Izosimov, Anton, In preparation
[9] Kapovich, Michael; Millson, John, On the moduli space of polygons in the Euclidean plane, J. Differ. Geom., 42, 1, 133-164, 1995 · Zbl 0847.51026 · doi:10.4310/jdg/1214457034
[10] Muir, Thomas, A treatise on the theory of determinants, vii+766 p. pp., 1960, Dover Publications
[11] Nijhoff, Frank; Capel, Hans, The discrete Korteweg-de Vries equation, Acta Appl. Math., 39, 1-3, 133-158, 1995 · Zbl 0841.58034 · doi:10.1007/BF00994631
[12] Pinkall, Ulrich; Springborn, Boris; Weißmann, Steffen, A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow, J. Phys. A. Math. Gen., 40, 42, 12563-12576, 2007 · Zbl 1121.76014 · doi:10.1088/1751-8113/40/42/S04
[13] Tabachnikov, Sergei, On the bicycle transformation and the filament equation: results and conjectures, J. Geom. Phys., 115, 116-123, 2017 · Zbl 1375.37159 · doi:10.1016/j.geomphys.2016.05.013
[14] Tabachnikov, Sergei, On centro-affine curves and Bäcklund transformations of the KdV equation, Arnold Math. J., 4, 3-4, 445-458, 2018 · Zbl 1455.37058 · doi:10.1007/s40598-019-00105-y
[15] Tabachnikov, Sergei; Tsukerman, Emmanuel, On the discrete bicycle transformation, Publ. Mat. Urug., 14, 201-219, 2013 · Zbl 1317.51027
[16] Tabachnikov, Sergei; Tsukerman, Emmanuel, Circumcenter of mass and generalized Euler line, Discrete Comput. Geom., 51, 4, 815-836, 2014 · Zbl 1301.51023 · doi:10.1007/s00454-014-9597-2
[17] Veselov, Alexander P.; Shabat, Alekseĭ B., Dressing chains and the spectral theory of the Schrödinger operator, Funkts. Anal. Prilozh., 27, 2, 81-96, 1993 · Zbl 0813.35099 · doi:10.1007/BF01085979
[18] Wegner, Franz J., Floating Bodies of Equilibrium in 2D, the Tire Track Problem and Electrons in a Parabolic Magnetic Field, 2007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.